Sergey V. Makarov
Degree
PhD
Main position
Main position
Professor
Date of Birth
Cell Phone
+79117609635
Email
s.makarov@metalab.ifmo.ru
Google scholar link
Skype:
vlasermak
FB-link
Education
Education institution
(827)
CV
Download CV (86.2 KB)
Papers
Impact Factor
Scientific Journal Ranking
2020
177.
[DOI:
10.3390/nano11010045
]
[
IF:
4.324
, SJR:
0.858
]
176.
[DOI:
10.1002/adom.202001715
]
[
IF:
8.286
, SJR:
2.750
]
175.
[DOI:
10.1063/5.0031984
]
[
SJR:
0.190
]
174.
[DOI:
10.1063/5.0031811
]
[
SJR:
0.190
]
173.
[DOI:
10.1063/5.0031764
]
[
SJR:
0.190
]
172.
[DOI:
10.1063/5.0031747
]
[
SJR:
0.190
]
171.
[DOI:
10.1063/5.0032230
]
[
SJR:
0.190
]
170.
[DOI:
10.1063/5.0031779
]
[
SJR:
0.190
]
169.
[DOI:
10.1002/lpor.202000338
]
[
IF:
10.655
, SJR:
4.014
]
168.
[DOI:
10.1039/d0tc02654a
]
[
IF:
7.059
, SJR:
1.934
]
167.
[DOI:
10.1021/acsnano.0c05710
]
[
IF:
14.588
, SJR:
6.131
, NI:
0.13
]
166.
165.
[DOI:
10.3390/nano10101937
]
[
IF:
4.324
, SJR:
0.858
]
164.
[DOI:
10.1364/cleo_qels.2020.fth1c.5
]
163.
Broadband transparency of perovskite metasurfaces driven by Kerker effect
[DOI:
10.1117/12.2568566
]
162.
[DOI:
10.1021/acsnano.0c04872
]
[
IF:
14.588
, SJR:
6.131
, NI:
0.38
]
161.
[DOI:
10.1063/5.0016173
]
[
IF:
3.597
, SJR:
1.343
, NI:
0.5
]
160.
[DOI:
10.3390/nano10071306
]
[
IF:
4.324
, SJR:
0.858
]
159.
[DOI:
10.1515/nanoph-2020-0207
]
[
IF:
7.491
, SJR:
2.618
]
158.
[DOI:
10.1021/acs.nanolett.0c01646
]
[
IF:
11.238
, SJR:
5.786
, NI:
0.81
]
157.
[DOI:
10.1021/acsnano.0c01104
]
[
IF:
14.588
, SJR:
6.131
, NI:
0.56
]
156.
[DOI:
10.1021/acsnano.0c01468
]
[
IF:
14.588
, SJR:
6.131
, NI:
0.53
]
155.
[DOI:
10.1088/1742-6596/1461/1/012013
]
[
SJR:
0.227
]
154.
[DOI:
10.1088/1742-6596/1461/1/012091
]
[
SJR:
0.227
]
153.
[DOI:
10.1002/smll.202000410
]
[
IF:
11.459
, SJR:
3.717
]
152.
[DOI:
10.1021/acs.jpclett.0c00745
]
[
IF:
6.710
, SJR:
2.976
, NI:
0.58
]
151.
[DOI:
10.1002/lpor.201900082
]
[
IF:
10.655
, SJR:
4.014
]
150.
[DOI:
10.1515/nanoph-2019-0443
]
[
IF:
7.491
, SJR:
2.618
]
149.
[DOI:
10.1103/physrevapplied.13.014021
]
[
IF:
4.194
, SJR:
1.866
]
2019
148.
[DOI:
10.1515/nanoph-2019-0377
]
[
IF:
6.908
, SJR:
2.639
]
147.
[DOI:
10.1016/j.jlumin.2019.116985
]
[
IF:
2.691
, SJR:
0.645
]
146.
[DOI:
10.1088/1742-6596/1410/1/012087
]
[
SJR:
0.221
]
145.
[DOI:
10.1088/1742-6596/1410/1/012077
]
[
SJR:
0.221
]
144.
[DOI:
10.1039/c9nr08952g
]
[
IF:
6.970
, SJR:
2.396
]
143.
[DOI:
10.1364/ome.10.000029
]
[
IF:
2.673
, SJR:
0.886
]
142.
[DOI:
10.7567/1882-0786/ab4b1b
]
[
IF:
2.772
, SJR:
0.924
]
141.
[DOI:
10.1063/1.5107449
]
[
IF:
12.750
, SJR:
4.099
]
140.
[DOI:
10.1002/ente.201900877
]
[
IF:
3.163
, SJR:
0.904
]
139.
[DOI:
10.1039/c9nr03793d
]
[
IF:
6.970
, SJR:
2.396
]
138.
[DOI:
10.1039/c9cp03656c
]
[
IF:
4.190
, SJR:
1.678
]
137.
[DOI:
10.1134/s0021364019130010
]
[
IF:
1.412
, SJR:
0.500
]
136.
[DOI:
10.1134/s1063784219030022
]
[
IF:
0.637
, SJR:
0.356
]
135.
Si1−xGex nanoantennas with a tailored Raman response and light-to-heat conversion for advanced sensing applications
[DOI:
10.1039/c9nr01837a
]
[
IF:
6.970
, SJR:
2.396
]
134.
Beyond Quantum Confinement: Excitonic Nonlocality in Halide Perovskite Nanoparticles with Mie Resonances
[DOI:
10.1039/C8NR09837A
]
[
IF:
6.970
, SJR:
2.396
]
133.
[DOI:
10.1021/acsnano.8b08948
]
[
IF:
13.903
, SJR:
6.214
, NI:
0.54
]
132.
[DOI:
10.1016/j.apsusc.2019.01.031
]
[
IF:
5.155
, SJR:
1.115
]
131.
[DOI:
10.1002/lpor.201800274
]
[
IF:
9.056
, SJR:
3.821
]
2018
130.
[DOI:
10.1088/1742-6596/1124/4/041022
]
[
SJR:
0.241
]
129.
[DOI:
10.1021/acsami.8b17396
]
[
IF:
8.097
, SJR:
2.784
]
128.
[DOI:
10.1016/j.apsusc.2018.12.084
]
[
IF:
4.439
, SJR:
1.093
]
127.
Dewetting Mechanisms and Their Exploitation for the Large-scale Fabrication of Advanced Nanophotonic Systems
126.
[DOI:
10.1088/1742-6596/1092/1/012122
]
[
SJR:
0.241
]
125.
[DOI:
10.1088/1742-6596/1092/1/012082
]
[
SJR:
0.241
]
124.
[DOI:
10.1088/1742-6596/1092/1/012038
]
[
SJR:
0.241
]
123.
[DOI:
10.1088/1742-6596/1092/1/012009
]
[
SJR:
0.241
]
122.
[DOI:
10.1088/1742-6596/1092/1/012179
]
[
SJR:
0.241
]
121.
[DOI:
10.1088/1742-6596/1092/1/012171
]
[
SJR:
0.241
]
120.
[DOI:
10.1021/acs.nanolett.8b01912
]
[
IF:
12.080
, SJR:
7.449
]
119.
[DOI:
10.1002/adom.201800576
]
[
IF:
7.430
, SJR:
3.121
]
118.
[DOI:
10.1002/adom.201800784
]
[
IF:
7.430
, SJR:
3.121
]
117.
Фотоиндуцированная миграция ионов в оптически резонансных перовскитных наночастицах
116.
Resonant Silicon Nanoparticles with Controllable Crystalline State and Nonlinear Optical Response
[DOI:
10.1039/C8NR02057D
]
[
IF:
7.233
, SJR:
2.934
]
115.
[DOI:
10.7868/S0370274X18110085
]
114.
[DOI:
doi.org/10.1002/lpor.201700168
]
[
IF:
8.529
, SJR:
4.228
]
113.
[DOI:
10.1039/C7NR07953B
]
[
IF:
7.233
, SJR:
2.934
]
112.
[DOI:
10.1038/s41598-018-24492-y
]
[
IF:
4.122
, SJR:
1.533
]
111.
[DOI:
10.1109/piers.2017.8261982
]
110.
[DOI:
10.1109/piers.2017.8262339
]
109.
[DOI:
10.1021/acs.nanolett.7b04727
]
[
IF:
12.080
, SJR:
7.447
]
108.
[DOI:
10.1109/piers.2017.8261891
]
107.
[DOI:
10.1109/piers.2017.8261981
]
106.
[DOI:
10.1002/adom.201701153
]
[
IF:
7.430
, SJR:
3.121
]
105.
[DOI:
10.1109/comcas.2017.8244858
]
104.
[DOI:
10.1109/comcas.2017.8244856
]
2017
103.
[DOI:
10.1021/acsami.7b16339
]
[
IF:
7.504
, SJR:
2.561
]
102.
[DOI:
10.1021/acs.nanolett.7b04542
]
[
IF:
12.712
, SJR:
7.893
]
101.
[DOI:
10.1109/dd.2017.8168050
]
100.
,
pp.
403-405
,
2017
[DOI:
10.1109/MetaMaterials.2017.8107828
]
99.
[DOI:
10.1088/1742-6596/917/6/062017
]
[
SJR:
0.240
]
98.
[DOI:
10.1063/1.4998103
]
[
SJR:
0.165
]
97.
[DOI:
10.1088/1742-6596/929/1/012053
]
[
SJR:
0.240
]
96.
[DOI:
10.1063/1.5007277
]
[
IF:
3.411
, SJR:
1.673
]
95.
[DOI:
10.1088/1742-6596/917/6/062002
]
[
SJR:
0.240
]
94.
[DOI:
10.1002/lpor.201700227
]
[
IF:
8.434
, SJR:
4.013
]
93.
[DOI:
10.1063/1.4998132
]
[
SJR:
0.165
]
92.
[DOI:
10.1063/1.4998100
]
[
SJR:
0.165
]
91.
[DOI:
10.1063/1.4998122
]
[
SJR:
0.165
]
90.
[DOI:
10.1063/1.4998054
]
[
SJR:
0.165
]
89.
[DOI:
10.1063/1.4998104
]
[
SJR:
0.165
]
88.
[DOI:
10.1063/1.4998131
]
[
SJR:
0.165
]
87.
[DOI:
10.1063/1.4998051
]
[
SJR:
0.165
]
86.
[DOI:
10.1063/1.4998078
]
[
SJR:
0.165
]
85.
[DOI:
10.1063/1.4998035
]
[
SJR:
0.165
]
84.
[DOI:
10.1063/1.4998072
]
[
SJR:
0.165
]
83.
[DOI:
10.1063/1.4998058
]
[
SJR:
0.165
]
82.
Atomistic simulation of Si-Au melt crystallization with novel interatomic potential
[DOI:
10.1016/j.commatsci.2017.09.054
]
[
IF:
2.292
, SJR:
0.893
]
81.
[DOI:
10.1007/s00340-017-6826-4
]
[
IF:
1.696
, SJR:
0.752
]
80.
[DOI:
10.1063/1.4998064
]
[
SJR:
0.165
]
79.
[DOI:
10.1016/j.apsusc.2017.07.263
]
[
IF:
3.387
, SJR:
0.958
]
78.
[DOI:
10.1002/lpor.201700108
]
[
IF:
8.434
, SJR:
4.013
]
77.
[DOI:
10.1364/OME.7.002793
]
[
IF:
2.591
, SJR:
1.042
]
76.
[DOI:
10.1021/acs.nanolett.7b00183
]
[
IF:
12.712
, SJR:
7.893
]
75.
[DOI:
10.1021/acs.nanolett.7b00392
]
[
IF:
12.712
, SJR:
7.893
]
74.
[DOI:
10.1021/acsphotonics.6b00940
]
[
IF:
6.756
, SJR:
3.471
]
73.
[DOI:
10.1016/j.photonics.2017.02.003
]
[
IF:
1.705
, SJR:
0.535
]
72.
[DOI:
10.1002/adma.201606034
]
[
IF:
19.791
, SJR:
9.184
]
71.
Resonant Silicon Nanoparticles for Enhancement of Light Absorption and Photoluminescence from Hybrid Perovskite Films and Metasurfaces
[DOI:
10.1039/c7nr01631j
]
[
IF:
7.367
, SJR:
2.789
]
2016
70.
Reconfigurable metal-dielectric nanodimers as component of hybrid nanophotonics
,
pp.
433-435
,
2016
[DOI:
10.1109/MetaMaterials.2016.7746426
]
69.
Nonlinear all-dielectric nanoantenna reconfigured by electron-hole plasma
68.
[DOI:
10.1109/DD.2016.7756894
]
67.
[DOI:
10.1109/DD.2016.7756826
]
66.
[DOI:
10.1109/DD.2016.7756895
]
65.
[DOI:
10.1109/DD.2016.7756833
]
64.
[DOI:
10.1109/metamaterials.2016.7746426
]
63.
[DOI:
10.1109/APS.2016.7695718
]
62.
[DOI:
10.1002/lpor.201600164
]
[
IF:
7.486
, SJR:
4.205
]
61.
[DOI:
10.4236/msa.2016.712064
]
60.
[DOI:
10.1088/1742-6596/741/1/012119
]
[
SJR:
0.252
]
59.
[DOI:
10.1088/1742-6596/741/1/012112
]
[
SJR:
0.252
]
58.
[DOI:
10.1109/lo.2016.7550034
]
57.
[DOI:
10.1039/C6NR04860A
]
[
IF:
7.760
, SJR:
2.770
]
56.
[DOI:
10.1016/j.surfcoat.2016.08.047
]
[
IF:
2.139
, SJR:
0.852
]
55.
[DOI:
10.1021/acsphotonics.6b00358
]
[
IF:
5.404
, SJR:
2.975
]
54.
[DOI:
10.1088/1742-6596/741/1/012140
]
[
SJR:
0.252
]
53.
[DOI:
10.1088/1742-6596/741/1/012152
]
[
SJR:
0.252
]
52.
[DOI:
10.1063/1.4954347
]
[
SJR:
0.180
]
51.
[DOI:
10.1063/1.4952740
]
[
IF:
3.142
, SJR:
1.499
]
50.
[DOI:
10.1039/C6NR01317A
]
[
IF:
7.760
, SJR:
2.770
]
49.
[DOI:
10.1039/C5NR07965A
]
[
IF:
7.760
, SJR:
2.770
]
48.
[DOI:
10.1088/1742-6596/690/1/012020
]
[
SJR:
0.252
]
47.
[DOI:
10.1088/1742-6596/690/1/012021
]
[
SJR:
0.252
]
46.
[DOI:
10.1002/adma.201505346
]
[
IF:
18.960
, SJR:
8.625
]
2015
45.
[DOI:
10.1039/C5NR06742A
]
[
IF:
7.394
, SJR:
2.646
]
44.
[DOI:
10.1038/srep19410
]
[
IF:
5.578
, SJR:
2.163
]
43.
[DOI:
10.1002/lpor.201500119
]
[
IF:
8.008
, SJR:
4.958
]
42.
[DOI:
10.1109/DD.2015.7354859
]
41.
[DOI:
10.1364/OL.40.004967
]
[
IF:
3.292
, SJR:
2.429
]
40.
[DOI:
10.1134/S0030400X15100240
]
[
IF:
0.723
, SJR:
0.304
]
39.
[DOI:
10.1021/acs.nanolett.5b02534
]
[
IF:
13.592
, SJR:
8.268
]
38.
[DOI:
10.1134/S0021364015060132
]
[
IF:
1.359
, SJR:
0.792
]
37.
[DOI:
10.1117/12.2176880
]
[
SJR:
0.248
]
36.
[DOI:
10.1364/OL.40.001687
]
[
IF:
3.292
, SJR:
2.429
]
35.
[DOI:
10.1088/1612-2011/12/4/046005
]
[
IF:
2.458
, SJR:
1.483
]
34.
[DOI:
10.1364/OE.23.005915
]
[
IF:
3.488
, SJR:
2.313
]
33.
[DOI:
10.1016/j.apsusc.2015.02.098
]
[
IF:
2.538
, SJR:
0.951
]
32.
[DOI:
10.1088/1612-2011/12/2/025902
]
[
IF:
2.458
, SJR:
1.483
]
2014
31.
[DOI:
10.1134/S0021364014170135
]
[
IF:
1.364
, SJR:
0.795
]
30.
Electron dynamics and prompt ablation of aluminum surface excited by intense femtosecond laser pulse
[DOI:
10.1007/s00339-014-8826-0
]
[
IF:
1.694
, SJR:
0.509
]
29.
[DOI:
10.1088/1612-2011/11/12/125602
]
[
IF:
2.964
, SJR:
1.418
]
28.
[DOI:
10.1070/QE2014v044n09ABEH015466
]
[
IF:
0.886
, SJR:
0.587
]
27.
[DOI:
10.1134/S0021364014130062
]
[
IF:
1.364
, SJR:
0.795
]
26.
[DOI:
10.1103/PhysRevE.90.023017
]
[
IF:
2.326
, SJR:
0.993
]
25.
[DOI:
10.1088/1612-2011/11/10/106101
]
[
IF:
2.964
, SJR:
1.418
]
24.
[DOI:
10.1134/S0021364014090057
]
[
IF:
1.364
, SJR:
0.795
]
23.
[DOI:
10.1070/QE2014v044n06ABEH015426
]
[
IF:
0.886
, SJR:
0.587
]
22.
[DOI:
10.1088/1612-2011/11/6/065301
]
[
IF:
2.964
, SJR:
1.418
]
21.
[DOI:
10.1134/S0021364014010020
]
[
IF:
1.364
, SJR:
0.795
]
20.
[DOI:
10.1016/j.apsusc.2013.12.032
]
[
IF:
2.538
, SJR:
0.960
]
2013
19.
[DOI:
10.1007/s00339-013-8196-z
]
[
IF:
1.694
, SJR:
0.509
]
18.
[DOI:
10.1016/j.apsusc.2013.07.144
]
[
IF:
2.112
, SJR:
0.913
]
17.
[DOI:
10.1016/j.optcom.2013.06.051
]
[
IF:
1.438
, SJR:
0.801
]
16.
[DOI:
10.1134/S0021364013100056
]
[
IF:
1.524
, SJR:
1.031
]
15.
Local field enhancement on metallic periodic surface structures produced by femtosecond laser pulses
[DOI:
10.1070/QE2013v043n04ABEH015105
]
[
IF:
0.823
, SJR:
0.464
]
14.
[DOI:
10.1364/OL.38.001452
]
[
IF:
3.385
, SJR:
2.577
]
13.
[DOI:
10.1088/1612-2011/10/5/056004
]
[
IF:
7.714
, SJR:
2.463
]
12.
[DOI:
10.1088/1612-2011/10/4/045605
]
[
IF:
7.714
, SJR:
2.463
]
11.
[DOI:
10.1007/s00340-013-5350-4
]
[
IF:
1.782
, SJR:
1.198
]
10.
[DOI:
10.1016/j.sab.2013.07.010
]
[
IF:
3.150
, SJR:
1.108
]
2012
9.
[DOI:
10.1134/S002136401218004X
]
[
IF:
1.352
, SJR:
0.771
]
8.
[DOI:
10.1007/s00339-012-6849-y
]
[
IF:
1.694
, SJR:
0.509
]
2011
7.
[DOI:
10.3103/S1068335611110030
]
6.
[DOI:
10.1070/QE2011v041n09ABEH014530
]
[
IF:
0.805
, SJR:
0.458
]
5.
[DOI:
10.1134/S002136401113008X
]
[
IF:
1.557
, SJR:
0.790
]
4.
[DOI:
10.1134/S199507801102008X
]
3.
[DOI:
10.1103/PhysRevB.83.115426
]
[
IF:
3.774
, SJR:
3.318
]
2.
[DOI:
10.1007/s00339-011-6323-2
]
[
IF:
1.694
, SJR:
0.509
]
1.
[DOI:
10.1134/S0021364011160065
]
[
IF:
1.557
, SJR:
0.790
]
Название патента | Авторы | Тип | Год |
---|---|---|---|
Перестраиваемый светодиод на основе перовскита с модификацией интерфейса | Екатерина Тигунцева, Сергей Макаров, Анвар Захидов, Дмитрий Гец, Эдуард Даниловский, Григорий Верхоглядов | Полезная модель | 2020 |
Светоизлучающий солнечный элемент | Сергей Макаров, Анвар Захидов, Дмитрий Гец, Эдуард Даниловский | Полезная модель | 2019 |
Cпособ изготовления неорганических перовскитных нановискеров типа CsPbBr3 | Сергей Макаров, Анатолий Пушкарев, Вячеслав Королёв, Дарья Маркина | Изобретение | 2019 |
Активная диэлектрическая наноантенна | Эдуард Агеев, Роман Савельев, Илья Шадривов, Артем Ларин, Сергей Макаров, Дмитрий Зуев, Анастасия Залогина | Полезная модель | 2019 |
Активный оптический элемент на основе перовскита с резонансными наночастицами | Александр Чебыкин, Екатерина Тигунцева, Сергей Макаров, Анвар Захидов | Полезная модель | 2018 |
Зонд для сканирующей зондовой микроскопии и способ его изготовления (варианты) | Филипп Комиссаренко, Антон Самусев, Иван Синев, Сергей Макаров | Изобретение | 2018 |
Источник генерации второй гармоники | Максим Тарасов, Михаил Петров, Сергей Макаров | Полезная модель | 2018 |
Нелинейная диэлектрическая наноантенна | Валентин Миличко, Сергей Макаров, Георгий Зограф, Дмитрий Зуев | Полезная модель | 2018 |