Sergey V. Makarov
Degree
PhD
Main position
Main position
Professor
Education
September
2011
-
December
2014
Education institution
ФИАН
Professional area
экспериментальная нанофотоника
Received degree
PhD
September
2005
-
September
2011
Education institution
МИФИ
Professional area
ФКС
Received degree
Специалист
Work experience
May
2013
-
September
2013
Affiliation
Vienna Technological University
Position
Visiting Scholar
Scholarships and grants
2019
Other grant
President’s of Russian Federation Grant
2015
Scholarship
President’s of Russian Federation Scholarship
Awards
2019
Medal of Russian Academy of Sciences for Young Researchers
2016
Alferov’s Foundation Medal for Young Researchers
2016
Saint-Petersburg Government Award in the field of technology
2019
Премия Президента Российской Федерации в области науки и инноваций для молодых учёных
2021
Research Excellence Award Russia
Teaching experience
September
2015
-
Position
Professor
Work address
ITMO
Papers
Impact Factor
Scientific Journal Ranking
2024
298.
[DOI:
10.1021/acs.nanolett.4c04491
]
[
IF:
11.189
, SJR:
4.853
]
297.
[DOI:
10.1021/acssensors.4c02033
]
[
IF:
8.567
, SJR:
2.055
]
296.
[DOI:
10.1002/aelm.202400396
]
[
IF:
7.068
, SJR:
2.250
]
295.
[DOI:
10.1021/acsami.4c11544
]
[
IF:
9.441
, SJR:
2.535
]
294.
[DOI:
10.1515/nanoph-2024-0396
]
[
IF:
8.449
, SJR:
2.717
]
293.
[DOI:
10.1515/nanoph-2024-0218
]
[
IF:
8.449
, SJR:
2.717
]
292.
[DOI:
10.1515/nanoph-2024-0267
]
[
IF:
8.449
, SJR:
2.717
]
291.
[DOI:
10.1002/adfm.202405457
]
[
IF:
18.808
, SJR:
6.069
]
290.
Electrically‐Driven Light Source Embedded in a GaP Nanowaveguide for Visible‐Range Photonics on Chip
[DOI:
10.1002/adom.202400581
]
[
IF:
9.926
, SJR:
2.890
]
289.
[DOI:
10.1016/j.apsusc.2024.160669
]
[
IF:
6.707
, SJR:
1.295
]
288.
[DOI:
10.1021/acsanm.4c02108
]
[
IF:
5.900
, SJR:
1.193
]
287.
[DOI:
10.1021/acs.jpcc.4c01839
]
[
IF:
4.189
, SJR:
1.477
]
286.
[DOI:
10.1002/adom.202400170
]
[
IF:
9.926
, SJR:
2.890
]
285.
[DOI:
10.1016/j.cej.2024.152771
]
[
IF:
14.660
, SJR:
2.528
]
284.
[DOI:
10.1002/lpor.202300829
]
[
IF:
13.138
, SJR:
3.778
]
283.
[DOI:
10.29026/oea.2024.230148
]
[
IF:
9.636
, SJR:
0.118
]
282.
[DOI:
10.1515/nanoph-2023-0922
]
[
IF:
7.923
, SJR:
2.124
]
281.
[DOI:
10.1021/acs.nanolett.3c04580
]
[
IF:
12.262
, SJR:
3.761
]
280.
[DOI:
10.1016/j.photonics.2024.101239
]
[
IF:
3.164
, SJR:
0.473
]
279.
[DOI:
10.1002/adom.202303049
]
[
IF:
9.926
, SJR:
2.890
]
278.
[DOI:
10.1002/adom.202302782
]
[
IF:
9.926
, SJR:
2.890
]
277.
[DOI:
10.1016/j.photonics.2024.101232
]
[
IF:
3.164
, SJR:
0.473
]
276.
[DOI:
10.1021/acsnano.3c10636
]
[
IF:
15.881
, SJR:
5.554
]
275.
[DOI:
10.1021/acs.jpclett.3c03151
]
[
IF:
6.888
, SJR:
1.850
]
2023
274.
[DOI:
10.1016/j.optlastec.2023.110411
]
[
IF:
3.867
, SJR:
0.874
]
273.
[DOI:
10.1021/acs.jpcc.3c04887
]
[
IF:
4.177
, SJR:
1.028
]
272.
[DOI:
10.1016/j.photonics.2023.101213
]
[
IF:
3.164
, SJR:
0.473
]
271.
[DOI:
10.1021/acsanm.3c03189
]
[
IF:
6.140
, SJR:
1.178
]
270.
[DOI:
10.1038/s41377-023-01262-8
]
[
IF:
17.455
, SJR:
5.497
]
269.
[DOI:
10.1016/j.jallcom.2023.172201
]
268.
[DOI:
10.1364/optica.498746
]
[
IF:
10.644
, SJR:
4.164
]
267.
[DOI:
10.1002/adom.202301123
]
[
IF:
9.926
, SJR:
2.890
]
266.
,
vol.
16
,
2023
[DOI:
10.18721/JPM.163.110
]
265.
[DOI:
10.1016/j.optlastec.2023.109777
]
[
IF:
3.867
, SJR:
0.874
]
264.
[DOI:
10.1002/adom.202300385
]
[
IF:
10.050
, SJR:
2.411
]
263.
All Optically Switchable Active Photonics Based on the Halide Perovskite GST Platform
[DOI:
10.1002/lpor.202200836
]
[
IF:
10.947
, SJR:
3.172
]
262.
[DOI:
10.1002/lpor.202300141
]
[
IF:
10.947
, SJR:
3.172
]
261.
[DOI:
10.1016/b978-0-32-398384-6.00017-6
]
260.
[DOI:
10.3390/nano13091563
]
[
IF:
5.076
, SJR:
0.919
]
259.
[DOI:
10.1016/j.dyepig.2023.111349
]
[
IF:
5.122
, SJR:
0.699
]
258.
[DOI:
10.29026/oea.2023.220154
]
[
IF:
8.933
, SJR:
2.200
]
257.
[DOI:
10.1021/acsmaterialsau.3c00006
]
256.
[DOI:
10.1063/5.0142570
]
[
IF:
3.971
, SJR:
1.025
]
255.
[DOI:
10.1021/acsaem.2c03246
]
[
IF:
6.959
, SJR:
1.588
]
254.
Light-Controlled Multiphase Structuring of Perovskite Crystal Enabled by Thermoplasmonic Metasurface
[DOI:
10.1021/acsnano.3c00373
]
[
IF:
18.027
, SJR:
4.611
]
253.
[DOI:
10.1039/d3nr00214d
]
[
IF:
8.307
, SJR:
1.744
]
252.
[DOI:
10.1021/acsanm.2c05469
]
[
IF:
6.140
, SJR:
1.178
]
251.
[DOI:
10.1021/acs.nanolett.2c04792
]
[
IF:
12.262
, SJR:
3.761
]
250.
[DOI:
10.3390/nano13060965
]
[
IF:
5.076
, SJR:
0.919
]
249.
[DOI:
10.1002/adfm.202215007
]
[
IF:
19.924
, SJR:
5.000
]
248.
[DOI:
10.1039/d3dt00080j
]
[
IF:
4.390
, SJR:
0.980
]
247.
[DOI:
10.1021/acsnano.2c09883
]
[
IF:
18.027
, SJR:
4.611
]
246.
[DOI:
10.1021/acsphotonics.2c01773
]
[
IF:
7.077
, SJR:
2.273
]
245.
[DOI:
10.3390/pharmaceutics15020534
]
[
IF:
6.525
, SJR:
0.922
]
244.
[DOI:
10.1002/adom.202202407
]
243.
[DOI:
10.3390/ma16030959
]
[
IF:
3.748
, SJR:
0.563
]
242.
[DOI:
10.3103/s1062873822700538
]
241.
[DOI:
10.3103/s1062873822700320
]
[
SJR:
0.226
]
240.
[DOI:
10.3103/s1062873822700642
]
[
SJR:
0.226
]
239.
[DOI:
10.1021/acsnano.2c11013
]
[
IF:
18.027
, SJR:
4.611
]
2022
238.
,
vol.
15
,
pp.
306-310
,
2022
[DOI:
10.18721/JPM.153.360
]
237.
[DOI:
10.1016/j.photonics.2022.101103
]
[
IF:
3.008
, SJR:
0.553
]
236.
[DOI:
10.1063/5.0106895
]
[
IF:
3.971
, SJR:
1.025
]
235.
[DOI:
10.1016/j.omx.2022.100214
]
234.
[DOI:
10.3390/nano12213916
]
[
IF:
5.719
, SJR:
0.839
]
233.
[DOI:
10.1021/acs.nanolett.2c03524
]
[
IF:
12.262
, SJR:
3.761
]
232.
[DOI:
10.3390/ijms232113375
]
[
IF:
5.923
, SJR:
1.455
]
231.
[DOI:
10.1002/lpor.202200295
]
[
IF:
10.947
, SJR:
3.172
]
230.
[DOI:
10.1109/wpw54272.2022.9901329
]
229.
[DOI:
10.1002/ente.202200485
]
[
IF:
4.149
, SJR:
0.825
]
228.
[DOI:
10.1021/acsanm.2c00941
]
[
IF:
6.140
, SJR:
1.178
]
227.
[DOI:
10.1016/j.apmt.2022.101545
]
[
IF:
8.663
, SJR:
1.619
]
226.
[DOI:
10.3390/nano12101756
]
[
IF:
5.719
, SJR:
0.839
]
225.
[DOI:
10.1002/adpr.202100326
]
224.
[DOI:
10.1515/nanoph-2022-0074
]
[
IF:
7.923
, SJR:
2.124
]
223.
[DOI:
10.1021/acs.chemrev.1c01029
]
[
IF:
72.087
, SJR:
18.718
]
222.
[DOI:
10.1021/acsphotonics.2c00036
]
[
IF:
7.077
, SJR:
2.273
]
221.
[DOI:
10.1021/acsabm.2c00295
]
[
SJR:
0.746
]
220.
[DOI:
10.1063/5.0088217
]
[
IF:
3.791
, SJR:
1.182
]
219.
[DOI:
10.1002/lpor.202100728
]
[
IF:
10.947
, SJR:
3.172
]
218.
[DOI:
10.1002/adfm.202109834
]
[
IF:
19.924
, SJR:
5.000
]
217.
[DOI:
10.1088/1742-6596/2172/1/012004
]
[
SJR:
0.210
]
216.
[DOI:
10.1021/acsphotonics.1c01511
]
[
IF:
7.077
, SJR:
2.273
]
215.
[DOI:
10.1021/acsphotonics.1c01347
]
[
IF:
7.077
, SJR:
2.273
]
2021
214.
[DOI:
10.1016/j.apmt.2021.101289
]
[
IF:
8.663
, SJR:
1.619
]
213.
[DOI:
10.1002/lpor.202100253
]
[
IF:
10.947
, SJR:
3.172
]
212.
[DOI:
10.1088/1742-6596/2086/1/012131
]
[
SJR:
0.210
]
211.
[DOI:
10.1021/acs.nanolett.1c03656
]
[
IF:
12.262
, SJR:
3.761
, NI:
0,43
]
210.
[DOI:
10.1088/1742-6596/2015/1/012104
]
[
IF:
0.550
, SJR:
0.210
]
209.
[DOI:
10.1088/1742-6596/2015/1/012115
]
[
SJR:
0.210
]
208.
[DOI:
10.1088/1742-6596/2015/1/012112
]
[
SJR:
0.210
]
207.
[DOI:
10.1088/1742-6596/2015/1/012010
]
[
IF:
0.550
, SJR:
0.210
]
206.
[DOI:
10.1088/1742-6596/2015/1/012077
]
[
SJR:
0.210
]
205.
[DOI:
10.1088/1742-6596/2015/1/012129
]
[
IF:
0.550
, SJR:
0.210
]
204.
[DOI:
10.1088/1742-6596/2015/1/012087
]
[
SJR:
0.210
]
203.
[DOI:
10.1088/1742-6596/2015/1/012019
]
[
IF:
0.550
, SJR:
0.210
]
202.
[DOI:
10.1109/cleo/europe-eqec52157.2021.9542035
]
201.
[DOI:
10.1021/acs.jpclett.1c02611
]
[
IF:
6.710
, SJR:
2.976
]
200.
Opto-thermally controlled beam steering in nonlinear all-dielectric metastructures
[DOI:
10.1364/oe.440564
]
[
IF:
3.833
, SJR:
1.233
]
199.
[DOI:
10.1021/acs.jpclett.1c01968
]
[
IF:
6.475
, SJR:
2.563
, NI:
0,77
]
198.
[DOI:
10.1016/j.nanoen.2021.106484
]
[
IF:
19.069
, SJR:
4.684
]
197.
[DOI:
10.1021/acs.nanolett.1c02074
]
[
IF:
12.262
, SJR:
3.761
, NI:
0,25
]
196.
[DOI:
10.1364/aop.426047
]
[
IF:
24.750
, SJR:
7.473
]
195.
[DOI:
10.1021/acs.nanolett.1c01857
]
[
IF:
12.262
, SJR:
3.761
, NI:
0,28
]
194.
[DOI:
10.1002/lpor.202100094
]
[
IF:
10.947
, SJR:
3.172
]
193.
[DOI:
10.1364/prj.422640
]
[
IF:
7.254
, SJR:
1.984
]
192.
[DOI:
10.1063/5.0048969
]
[
IF:
3.971
, SJR:
1.025
, NI:
0,53
]
191.
[DOI:
10.1021/acs.jpcc.1c01492
]
[
IF:
4.126
, SJR:
1.477
]
190.
[DOI:
10.1021/acs.chemmater.0c04263
]
[
IF:
10.508
, SJR:
2.930
]
189.
[DOI:
10.1117/12.2592977
]
188.
[DOI:
10.1063/5.0042557
]
[
IF:
3.971
, SJR:
1.025
, NI:
0,75
]
187.
[DOI:
10.1002/adpr.202000139
]
186.
[DOI:
10.3390/nano11020412
]
[
IF:
5.719
, SJR:
0.839
]
185.
[DOI:
10.1021/acsami.0c20463
]
[
IF:
9.229
, SJR:
2.535
]
184.
[DOI:
10.3390/nano11020313
]
[
IF:
5.719
, SJR:
0.839
]
2020
183.
[DOI:
10.3390/nano11010045
]
[
IF:
5.076
, SJR:
0.919
]
182.
[DOI:
10.1002/adom.202001715
]
[
IF:
9.926
, SJR:
2.890
]
181.
[DOI:
10.1063/5.0032230
]
[
SJR:
0.190
]
180.
[DOI:
10.1063/5.0031779
]
[
SJR:
0.190
]
179.
[DOI:
10.1063/5.0031984
]
[
SJR:
0.190
]
178.
[DOI:
10.1063/5.0031811
]
[
SJR:
0.190
]
177.
[DOI:
10.1063/5.0031764
]
[
SJR:
0.190
]
176.
[DOI:
10.1063/5.0031747
]
[
SJR:
0.190
]
175.
[DOI:
10.4028/www.scientific.net/ssp.312.185
]
[
SJR:
0.198
]
174.
[DOI:
10.4028/www.scientific.net/ssp.312.179
]
[
SJR:
0.198
]
173.
[DOI:
10.1002/lpor.202000338
]
[
IF:
13.138
, SJR:
3.778
]
172.
[DOI:
10.1039/d0tc02654a
]
[
IF:
7.393
, SJR:
1.899
]
171.
[DOI:
10.1021/acsnano.0c05710
]
[
IF:
15.881
, SJR:
5.554
, NI:
0.13
]
170.
169.
[DOI:
10.3390/nano10101937
]
[
IF:
5.076
, SJR:
0.919
]
168.
[DOI:
10.1364/cleo_qels.2020.fth1c.5
]
167.
Broadband transparency of perovskite metasurfaces driven by Kerker effect
[DOI:
10.1117/12.2568566
]
166.
[DOI:
10.1021/acsnano.0c04872
]
[
IF:
15.881
, SJR:
5.554
, NI:
0.38
]
165.
[DOI:
10.1063/5.0016173
]
[
IF:
3.791
, SJR:
1.182
, NI:
0.5
]
164.
[DOI:
10.3390/nano10071306
]
[
IF:
5.076
, SJR:
0.919
]
163.
[DOI:
10.1515/nanoph-2020-0207
]
[
IF:
8.449
, SJR:
2.717
]
162.
[DOI:
10.1021/acs.nanolett.0c01646
]
[
IF:
11.189
, SJR:
4.853
, NI:
0.81
]
161.
[DOI:
10.1021/acsnano.0c01104
]
[
IF:
15.881
, SJR:
5.554
, NI:
0.56
]
160.
[DOI:
10.1021/acsnano.0c01468
]
[
IF:
15.881
, SJR:
5.554
, NI:
0.53
]
159.
[DOI:
10.1088/1742-6596/1461/1/012071
]
[
SJR:
0.227
]
158.
[DOI:
10.1088/1742-6596/1461/1/012013
]
[
SJR:
0.227
]
157.
[DOI:
10.1088/1742-6596/1461/1/012091
]
[
SJR:
0.227
]
156.
[DOI:
10.1088/1742-6596/1461/1/012081
]
[
SJR:
0.227
]
155.
[DOI:
10.1088/1742-6596/1461/1/012086
]
[
SJR:
0.227
]
154.
[DOI:
10.1088/1742-6596/1461/1/012179
]
[
SJR:
0.227
]
153.
[DOI:
10.1088/1742-6596/1461/1/012178
]
[
SJR:
0.210
]
152.
[DOI:
10.1002/smll.202000410
]
[
IF:
13.281
, SJR:
3.785
]
151.
[DOI:
10.1021/acs.jpclett.0c00745
]
[
IF:
6.710
, SJR:
2.976
, NI:
0.58
]
150.
[DOI:
10.1002/lpor.201900082
]
[
IF:
13.138
, SJR:
3.778
]
149.
[DOI:
10.1515/nanoph-2019-0443
]
[
IF:
8.449
, SJR:
2.717
]
148.
[DOI:
10.1103/physrevapplied.13.014021
]
[
IF:
4.985
, SJR:
1.883
]
2019
147.
[DOI:
10.1515/nanoph-2019-0377
]
[
IF:
7.491
, SJR:
2.618
]
146.
[DOI:
10.1016/j.jlumin.2019.116985
]
[
IF:
3.280
, SJR:
0.626
]
145.
[DOI:
10.1088/1742-6596/1410/1/012087
]
[
SJR:
0.221
]
144.
[DOI:
10.1088/1742-6596/1410/1/012077
]
[
SJR:
0.221
]
143.
[DOI:
10.1039/c9nr08952g
]
[
IF:
6.895
, SJR:
2.180
]
142.
[DOI:
10.1364/ome.10.000029
]
[
IF:
3.064
, SJR:
0.948
]
141.
[DOI:
10.7567/1882-0786/ab4b1b
]
[
IF:
3.086
, SJR:
0.959
]
140.
[DOI:
10.1063/1.5107449
]
[
IF:
17.054
, SJR:
3.983
]
139.
[DOI:
10.1002/ente.201900877
]
[
IF:
3.404
, SJR:
0.846
]
138.
[DOI:
10.1039/c9nr03793d
]
[
IF:
6.895
, SJR:
2.180
]
137.
[DOI:
10.1039/c9cp03656c
]
[
IF:
3.430
, SJR:
1.143
]
136.
[DOI:
10.1134/s0021364019130010
]
[
IF:
1.399
, SJR:
0.583
]
135.
[DOI:
10.1134/s1063784219030022
]
[
IF:
0.603
, SJR:
0.376
]
134.
Si1−xGex nanoantennas with a tailored Raman response and light-to-heat conversion for advanced sensing applications
[DOI:
10.1039/c9nr01837a
]
[
IF:
6.895
, SJR:
2.180
]
133.
Beyond Quantum Confinement: Excitonic Nonlocality in Halide Perovskite Nanoparticles with Mie Resonances
[DOI:
10.1039/C8NR09837A
]
[
IF:
6.895
, SJR:
2.180
]
132.
[DOI:
10.1021/acsnano.8b08948
]
[
IF:
14.588
, SJR:
6.131
, NI:
0.54
]
131.
[DOI:
10.1016/j.apsusc.2019.01.031
]
[
IF:
6.182
, SJR:
1.230
]
130.
[DOI:
10.1002/lpor.201800274
]
[
IF:
10.655
, SJR:
4.014
]
2018
129.
[DOI:
10.1088/1742-6596/1124/4/041022
]
[
SJR:
0.241
]
128.
[DOI:
10.1021/acsami.8b17396
]
[
IF:
8.097
, SJR:
2.784
]
127.
[DOI:
10.1016/j.apsusc.2018.12.084
]
[
IF:
5.155
, SJR:
1.115
]
126.
Dewetting Mechanisms and Their Exploitation for the Large-scale Fabrication of Advanced Nanophotonic Systems
125.
[DOI:
10.1088/1742-6596/1092/1/012082
]
[
SJR:
0.241
]
124.
[DOI:
10.1088/1742-6596/1092/1/012038
]
[
SJR:
0.241
]
123.
[DOI:
10.1088/1742-6596/1092/1/012009
]
[
SJR:
0.241
]
122.
[DOI:
10.1088/1742-6596/1092/1/012179
]
[
SJR:
0.241
]
121.
[DOI:
10.1088/1742-6596/1092/1/012171
]
[
SJR:
0.241
]
120.
[DOI:
10.1088/1742-6596/1092/1/012122
]
[
SJR:
0.241
]
119.
[DOI:
10.1021/acs.nanolett.8b01912
]
[
IF:
12.279
, SJR:
6.211
]
118.
[DOI:
10.1002/adom.201800576
]
[
IF:
7.125
, SJR:
2.711
]
117.
[DOI:
10.1002/adom.201800784
]
[
IF:
7.125
, SJR:
2.711
]
116.
Resonant Silicon Nanoparticles with Controllable Crystalline State and Nonlinear Optical Response
[DOI:
10.1039/C8NR02057D
]
[
IF:
6.970
, SJR:
2.396
]
115.
[DOI:
10.7868/S0370274X18110085
]
114.
Фотоиндуцированная миграция ионов в оптически резонансных перовскитных наночастицах
113.
[DOI:
doi.org/10.1002/lpor.201700168
]
[
IF:
9.056
, SJR:
3.821
]
112.
[DOI:
10.1039/C7NR07953B
]
[
IF:
6.970
, SJR:
2.396
]
111.
[DOI:
10.1038/s41598-018-24492-y
]
[
IF:
4.011
, SJR:
1.414
]
110.
[DOI:
10.1021/acs.nanolett.7b04727
]
[
IF:
12.279
, SJR:
6.211
]
109.
[DOI:
10.1109/piers.2017.8261981
]
108.
[DOI:
10.1109/piers.2017.8261982
]
107.
[DOI:
10.1109/piers.2017.8262339
]
106.
[DOI:
10.1109/piers.2017.8261891
]
105.
[DOI:
10.1002/adom.201701153
]
[
IF:
7.125
, SJR:
2.711
]
104.
[DOI:
10.1109/comcas.2017.8244856
]
103.
[DOI:
10.1109/comcas.2017.8244858
]
2017
102.
[DOI:
10.1021/acsami.7b16339
]
[
IF:
7.504
, SJR:
2.561
]
101.
[DOI:
10.1021/acs.nanolett.7b04542
]
[
IF:
12.080
, SJR:
7.447
]
100.
[DOI:
10.1109/dd.2017.8168050
]
99.
[DOI:
10.1063/1.4998103
]
[
SJR:
0.165
]
98.
,
pp.
403-405
,
2017
[DOI:
10.1109/MetaMaterials.2017.8107828
]
97.
[DOI:
10.1088/1742-6596/917/6/062017
]
[
SJR:
0.240
]
96.
[DOI:
10.1088/1742-6596/929/1/012053
]
[
SJR:
0.240
]
95.
[DOI:
10.1063/1.5007277
]
[
IF:
3.495
, SJR:
1.382
]
94.
[DOI:
10.1088/1742-6596/917/6/062002
]
[
SJR:
0.240
]
93.
[DOI:
10.1002/lpor.201700227
]
[
IF:
8.529
, SJR:
4.228
]
92.
[DOI:
10.1063/1.4998122
]
[
SJR:
0.165
]
91.
[DOI:
10.1063/1.4998054
]
[
SJR:
0.165
]
90.
[DOI:
10.1063/1.4998104
]
[
SJR:
0.165
]
89.
[DOI:
10.1063/1.4998131
]
[
SJR:
0.165
]
88.
[DOI:
10.1063/1.4998051
]
[
SJR:
0.165
]
87.
[DOI:
10.1063/1.4998078
]
[
SJR:
0.165
]
86.
[DOI:
10.1063/1.4998035
]
[
SJR:
0.165
]
85.
[DOI:
10.1063/1.4998072
]
[
SJR:
0.165
]
84.
[DOI:
10.1063/1.4998058
]
[
SJR:
0.165
]
83.
[DOI:
10.1063/1.4998132
]
[
SJR:
0.165
]
82.
[DOI:
10.1063/1.4998100
]
[
SJR:
0.165
]
81.
[DOI:
10.1007/s00340-017-6826-4
]
[
IF:
1.696
, SJR:
0.752
]
80.
Atomistic simulation of Si-Au melt crystallization with novel interatomic potential
[DOI:
10.1016/j.commatsci.2017.09.054
]
[
IF:
2.530
, SJR:
1.766
]
79.
[DOI:
10.1063/1.4998064
]
[
SJR:
0.165
]
78.
[DOI:
10.1016/j.apsusc.2017.07.263
]
[
IF:
4.439
, SJR:
1.093
]
77.
[DOI:
10.1002/lpor.201700108
]
[
IF:
8.529
, SJR:
4.228
]
76.
[DOI:
10.1364/OME.7.002793
]
[
IF:
2.566
, SJR:
0.952
]
75.
[DOI:
10.1021/acs.nanolett.7b00183
]
[
IF:
12.080
, SJR:
7.447
]
74.
[DOI:
10.1021/acs.nanolett.7b00392
]
[
IF:
12.080
, SJR:
7.447
]
73.
[DOI:
10.1021/acsphotonics.6b00940
]
[
IF:
6.880
, SJR:
3.376
]
72.
[DOI:
10.1016/j.photonics.2017.02.003
]
[
IF:
1.705
, SJR:
0.535
]
71.
[DOI:
10.1002/adma.201606034
]
[
IF:
21.950
, SJR:
10.579
]
70.
Resonant Silicon Nanoparticles for Enhancement of Light Absorption and Photoluminescence from Hybrid Perovskite Films and Metasurfaces
[DOI:
10.1039/c7nr01631j
]
[
IF:
7.233
, SJR:
2.934
]
2016
69.
Nonlinear all-dielectric nanoantenna reconfigured by electron-hole plasma
68.
[DOI:
10.1109/DD.2016.7756826
]
67.
[DOI:
10.1109/DD.2016.7756895
]
66.
[DOI:
10.1109/DD.2016.7756833
]
65.
[DOI:
10.1109/DD.2016.7756894
]
64.
[DOI:
10.1109/metamaterials.2016.7746426
]
63.
[DOI:
10.1109/APS.2016.7695718
]
62.
[DOI:
10.4236/msa.2016.712064
]
61.
[DOI:
10.1002/lpor.201600164
]
[
IF:
8.434
, SJR:
4.013
]
60.
[DOI:
10.1088/1742-6596/741/1/012112
]
[
SJR:
0.252
]
59.
[DOI:
10.1088/1742-6596/741/1/012119
]
[
SJR:
0.252
]
58.
[DOI:
10.1109/lo.2016.7550034
]
57.
[DOI:
10.1039/C6NR04860A
]
[
IF:
7.367
, SJR:
2.789
]
56.
[DOI:
10.1016/j.surfcoat.2016.08.047
]
[
IF:
2.139
, SJR:
0.852
]
55.
[DOI:
10.1021/acsphotonics.6b00358
]
[
IF:
6.756
, SJR:
3.471
]
54.
[DOI:
10.1088/1742-6596/741/1/012140
]
[
SJR:
0.252
]
53.
[DOI:
10.1088/1742-6596/741/1/012152
]
[
SJR:
0.252
]
52.
[DOI:
10.1063/1.4954347
]
[
SJR:
0.180
]
51.
[DOI:
10.1063/1.4952740
]
[
IF:
3.411
, SJR:
1.673
]
50.
[DOI:
10.1039/C6NR01317A
]
[
IF:
7.367
, SJR:
2.789
]
49.
[DOI:
10.1039/C5NR07965A
]
[
IF:
7.367
, SJR:
2.789
]
48.
[DOI:
10.1088/1742-6596/690/1/012021
]
[
SJR:
0.252
]
47.
[DOI:
10.1088/1742-6596/690/1/012020
]
[
SJR:
0.252
]
46.
[DOI:
10.1002/adma.201505346
]
[
IF:
19.791
, SJR:
9.184
]
2015
45.
[DOI:
10.1039/C5NR06742A
]
[
IF:
7.760
, SJR:
2.770
]
44.
[DOI:
10.1038/srep19410
]
[
IF:
5.228
, SJR:
2.034
]
43.
[DOI:
10.1002/lpor.201500119
]
[
IF:
7.486
, SJR:
4.205
]
42.
[DOI:
10.1109/DD.2015.7354859
]
41.
[DOI:
10.1364/OL.40.004967
]
[
IF:
3.040
, SJR:
2.013
]
40.
[DOI:
10.1134/S0030400X15100240
]
[
IF:
0.644
, SJR:
0.273
]
39.
[DOI:
10.1021/acs.nanolett.5b02534
]
[
IF:
13.779
, SJR:
8.359
]
38.
[DOI:
10.1134/S0021364015060132
]
[
IF:
1.172
, SJR:
0.623
]
37.
[DOI:
10.1117/12.2176880
]
[
SJR:
0.248
]
36.
[DOI:
10.1364/OL.40.001687
]
[
IF:
3.040
, SJR:
2.013
]
35.
[DOI:
10.1088/1612-2011/12/4/046005
]
[
IF:
2.391
, SJR:
1.250
]
34.
[DOI:
10.1364/OE.23.005915
]
[
IF:
3.148
, SJR:
1.910
]
33.
[DOI:
10.1016/j.apsusc.2015.02.098
]
[
IF:
3.150
, SJR:
0.890
]
32.
[DOI:
10.1088/1612-2011/12/2/025902
]
[
IF:
2.391
, SJR:
1.250
]
2014
31.
[DOI:
10.1134/S0021364014170135
]
[
IF:
1.359
, SJR:
0.762
]
30.
Electron dynamics and prompt ablation of aluminum surface excited by intense femtosecond laser pulse
[DOI:
10.1007/s00339-014-8826-0
]
[
IF:
1.694
, SJR:
0.509
]
29.
[DOI:
10.1088/1612-2011/11/12/125602
]
[
IF:
2.458
, SJR:
1.483
]
28.
[DOI:
10.1070/QE2014v044n09ABEH015466
]
[
IF:
0.897
, SJR:
0.551
]
27.
[DOI:
10.1134/S0021364014130062
]
[
IF:
1.359
, SJR:
0.762
]
26.
[DOI:
10.1103/PhysRevE.90.023017
]
[
IF:
2.288
, SJR:
1.244
]
25.
[DOI:
10.1088/1612-2011/11/10/106101
]
[
IF:
2.458
, SJR:
1.483
]
24.
[DOI:
10.1134/S0021364014090057
]
[
IF:
1.359
, SJR:
0.762
]
23.
[DOI:
10.1070/QE2014v044n06ABEH015426
]
[
IF:
0.897
, SJR:
0.551
]
22.
[DOI:
10.1088/1612-2011/11/6/065301
]
[
IF:
2.458
, SJR:
1.483
]
21.
[DOI:
10.1134/S0021364014010020
]
[
IF:
1.359
, SJR:
0.762
]
20.
[DOI:
10.1016/j.apsusc.2013.12.032
]
[
IF:
2.711
, SJR:
0.948
]
2013
19.
[DOI:
10.1007/s00339-013-8196-z
]
[
IF:
1.694
, SJR:
0.509
]
18.
[DOI:
10.1016/j.apsusc.2013.07.144
]
[
IF:
2.538
, SJR:
0.960
]
17.
[DOI:
10.1016/j.optcom.2013.06.051
]
[
IF:
1.542
, SJR:
0.740
]
16.
[DOI:
10.1134/S0021364013100056
]
[
IF:
1.364
, SJR:
0.795
]
15.
Local field enhancement on metallic periodic surface structures produced by femtosecond laser pulses
[DOI:
10.1070/QE2013v043n04ABEH015105
]
[
IF:
0.886
, SJR:
0.587
]
14.
[DOI:
10.1364/OL.38.001452
]
[
IF:
3.179
, SJR:
2.441
]
13.
[DOI:
10.1088/1612-2011/10/5/056004
]
[
IF:
2.964
, SJR:
1.418
]
12.
[DOI:
10.1088/1612-2011/10/4/045605
]
[
IF:
2.964
, SJR:
1.418
]
11.
[DOI:
10.1007/s00340-013-5350-4
]
[
IF:
1.782
, SJR:
1.198
]
10.
[DOI:
10.1016/j.sab.2013.07.010
]
[
IF:
3.150
, SJR:
1.108
]
2012
9.
[DOI:
10.1134/S002136401218004X
]
[
IF:
1.524
, SJR:
1.031
]
8.
[DOI:
10.1007/s00339-012-6849-y
]
[
IF:
1.694
, SJR:
0.509
]
2011
7.
[DOI:
10.3103/S1068335611110030
]
6.
[DOI:
10.1070/QE2011v041n09ABEH014530
]
[
IF:
0.832
, SJR:
0.489
]
5.
[DOI:
10.1134/S002136401113008X
]
[
IF:
1.352
, SJR:
0.771
]
4.
[DOI:
10.1134/S199507801102008X
]
3.
[DOI:
10.1103/PhysRevB.83.115426
]
[
IF:
3.691
]
2.
[DOI:
10.1007/s00339-011-6323-2
]
[
IF:
1.694
, SJR:
0.509
]
1.
[DOI:
10.1134/S0021364011160065
]
[
IF:
1.352
, SJR:
0.771
]
Experimental Methods of Nanophotonics II (in English
)
Название патента | Авторы | Тип | Год |
---|---|---|---|
Method for manufacturing highly crystalline inorganicperovskite thin films CsPbBr3 | Anatoly Pushkarev, Sergey Anoshkin, Sergey Makarov, Dmitry Tatarinov | Изобретение | 2023 |
Синий светодиод на основе галогенидных перовскит-полимерных материалов и способ его изготовления | Sergey Makarov, Anatoly Pushkarev, Sergey Anoshkin | Изобретение | 2022 |
Модуль умного окна | Eduard Danilovskiy, Lev Zelenkov, Anatoly Pushkarev, Dmitry Gets, Sergey Anoshkin, Sergey Makarov, Anvar Zakhidov | Полезная модель | 2021 |
Method of making inorganic chlorine-containing perovskite thin films | Tatiana Liashenko, Sergey Anoshkin, Sergey Makarov, Anatoly Pushkarev | Изобретение | 2020 |
Method of producing electroluminescent mixed lead-halide perovskite materials with high phase stability | Anatoly Pushkarev, Tatiana Liashenko, Sergey Anoshkin, Sergey Makarov | Изобретение | 2020 |