Pavel Belov
Main position
Main position
Head of Physics and Engineering School, Professor
Position
- Head of laboratory
- Head researcher
- Professor
Cell Phone
+79633222320
Email
belov@metalab.ifmo.ru
Work Phone
8(812)457-18-47
Date of Birth
ORCID
ORCID
0000-0002-5107-2763
Scopus Author ID
Scopus id
7006167582
Google scholar link
Personal page
CV
Education
February
2004
-
November
2010
Education institution
ITMO University
Professional area
Оптика и радиофизика
Received degree
Доктор наук
Thesis
Аналитическое моделирование электромагнитных кристаллов и левосторонних материалов
May
2001
-
November
2006
Education institution
Хельсинкский Университет Технологий
Professional area
Радиоинженерия и электромагнетизм
Received degree
Доктор наук в области Технологии, с отличием (второе PhD)
Thesis
Аналитическое моделирование метаматериалов и новых принципов передачи изображений с субволновым разрешением
May
2001
-
September
2004
Education institution
Хельсинкский Университет Технологий
Professional area
Радиоинженерия и электромагнетизм
Received degree
Лиценциат в области Технологии, с отличием
Thesis
Аналитическое изучение комплексных СВЧ структур с областью запирания
July
2000
-
May
2003
Education institution
Университет ИТМО
Professional area
Оптика и радиофизика
Received degree
Кандидат наук
Thesis
Аналитическое моделирование электромагнитных кристаллов
September
1998
-
May
2000
Education institution
Университет ИТМО
Professional area
Прикладная математика и информатика
Received degree
Магистр наук, с отличием
Thesis
Электромагнитное взаимодействие в регулярных массивах рассеивателей
September
1994
-
May
1998
Education institution
Университет ИТМО
Professional area
Прикладная математика и информатика
Received degree
Бакалавр наук, с отличием
Thesis
Точное решение задач взаимодействия и возбуждения в регулярных массивах бианизотропных рассеивателей
Work experience
November
2008
-
March
2009
Affiliation
Robert Bosch GmbH
Position
Research Engineer (Consultancy)
Professional area
Исследования в области термоэлектрических материалов и фотоэлектрических элементов,
анализ альтернативных источников энергии
June
2005
-
August
2012
Affiliation
Факультет электроники, Лондонский Университет Королевы Марии, Mile End Road, London E1 4NS, UK (www.elec.qmul.ac.uk)
Position
Научный сотрудник / EPSRC Advanced Research Fellow
Professional area
Теоретические и экспериментальные исследования метаматериалов: электромагнитных кристаллов, левых сред и наноструктур в рамках проекта EPSRC.
December
2004
-
May
2005
Affiliation
Телекоммуникационные технологии, подразделение мобильной связи, Samsung Electronics Co., Ltd., #94-1, Imsoo-Dong, Gumi-City, Gyeong-Buk, 730-350, Корея (www.samsung.com)
Position
Инженер-исследователь
Professional area
Разработка и численное моделирование антенн для мобильных терминалов (ультра-компактные, многополосные, широкополосный) с использованием искусственных материалов.
May
2003
-
November
2004
Affiliation
Санкт-Петербургский Государственный Университет Информационных Технологий, Механики и Оптики, 197101, пр. Кронверкский, д. 49, Санкт-Петербург, Россия (www.ifmo.ru)
Position
Старший научный сотрудник / Доцент
Professional area
Теоретическое и численное исследование электромагнитных кристаллов и метаматериалов
January
2001
-
May
2003
Affiliation
Радиолаборатория, Хельсинский технологический университет, PO. Box 3000, FIN-02015 TKK, Espoo, Финляндия (www.hut.fi)
Position
Исследователь
Professional area
Теоретические и экспериментальные исследования электромагнитных кристаллов, метаматериалов и поверхностей с высоким импедансом. Участие в промышленных проектах (Nokia Research Projects, www.nokia.fi). Разработка и совершенствование антенн для мобильных те
February
1996
-
December
2000
Affiliation
Санкт-Петербургский Институт Точной Механики и Оптики (Технический Университет), 197101, пр. Кронверкский, д. 49, Санкт-Петербург, Россия (www.ifmo.ru)
Position
Научный сотрудник, кафедра Физики
Professional area
Аналитическое моделирование фотонных кристаллов и бианизотропных материалов (неотражающих щитов, стелс-технологий). Участие в научно-исследовательских проектах - Российский фонд фундаментальных исследований (www.rfbr.ru)
Membership in professional societies
- A member of IEEE (Institute of Electrical and Electronics Engineers, www.ieee.org) AP-S (Antennas and Propagation Society, www.ieeeaps.org), ED-S (Electron Devices Society, www.ieee.org/society/eds/), MTT-S (Microwave Theory and Techniques Society, www.mtt.org), LEO-S (Laser and Electro-Optics Society, www.i-leos.org); URSI (International Union of Radio Science, www.ursi.org), SPIE (International Society for Optical Engineering, www.spie.org), OSA (Optical Society of America, www.osa.org).
Papers
Impact Factor
Scientific Journal Ranking
2024
391.
[DOI:
10.1103/physrevb.110.l140303
]
[
IF:
4.036
, SJR:
1.780
]
390.
[DOI:
10.1109/iclo59702.2024.10624508
]
389.
[DOI:
10.1109/wptce59894.2024.10557310
]
388.
[DOI:
10.1109/wptce59894.2024.10557440
]
387.
[DOI:
10.1109/wptce59894.2024.10557386
]
386.
[DOI:
10.1016/j.optcom.2024.130648
]
[
IF:
2.310
, SJR:
0.625
]
2023
385.
[DOI:
10.1109/metamaterials58257.2023.10289542
]
384.
[DOI:
10.1038/s44172-023-00116-w
]
383.
[DOI:
10.1103/physrevapplied.20.044051
]
[
IF:
4.985
, SJR:
1.883
]
382.
[DOI:
10.1117/12.3008377
]
381.
[DOI:
10.1038/s41377-023-01262-8
]
[
IF:
17.455
, SJR:
5.497
]
380.
[DOI:
10.1063/5.0155677
]
[
IF:
2.546
, SJR:
0.699
]
379.
[DOI:
10.1016/j.photonics.2023.101150
]
[
IF:
3.164
, SJR:
0.473
]
378.
[DOI:
10.1016/j.photonics.2023.101147
]
[
IF:
3.164
, SJR:
0.473
]
377.
[DOI:
10.1103/physrevb.107.115170
]
[
IF:
3.908
, SJR:
1.537
]
376.
[DOI:
10.1103/physrevd.107.055013
]
[
IF:
5.407
, SJR:
1.677
]
2022
375.
[DOI:
10.1016/j.photonics.2022.101104
]
[
IF:
3.008
, SJR:
0.553
]
374.
[DOI:
10.1103/physrevapplied.18.054063
]
[
IF:
4.931
, SJR:
1.534
]
373.
Detunable Wire Metasurface for Applications in Magnetic Resonance Imaging
[DOI:
10.3103/S1062873822701040
]
[
SJR:
0.226
]
372.
[DOI:
10.1109/metamaterials54993.2022.9920785
]
371.
[DOI:
10.1364/ol.461657
]
[
IF:
3.560
, SJR:
1.263
]
370.
[DOI:
10.1103/physrevb.106.075106
]
[
IF:
3.908
, SJR:
1.537
]
369.
[DOI:
10.1364/ol.462021
]
[
IF:
3.560
, SJR:
1.263
]
368.
[DOI:
10.1109/tap.2022.3177531
]
[
IF:
4.824
, SJR:
2.128
]
367.
[DOI:
10.1038/s41377-022-00810-y
]
[
IF:
17.455
, SJR:
5.497
]
366.
[DOI:
10.1109/tap.2022.3143879
]
[
IF:
4.824
, SJR:
2.128
]
365.
[DOI:
10.1016/j.jqsrt.2022.108065
]
[
IF:
2.468
, SJR:
0.810
]
2021
364.
[DOI:
10.1088/1742-6596/2015/1/012113
]
[
IF:
0.550
, SJR:
0.210
]
363.
[DOI:
10.1088/1742-6596/2015/1/012043
]
[
SJR:
0.210
]
362.
[DOI:
10.1088/1742-6596/2015/1/012130
]
[
SJR:
0.210
]
361.
[DOI:
10.1103/physrevb.104.195406
]
[
IF:
3.908
, SJR:
1.537
]
360.
[DOI:
10.1109/metamaterials52332.2021.9577174
]
359.
[DOI:
10.1038/s41928-021-00658-x
]
[
IF:
33.255
, SJR:
8.302
]
358.
[DOI:
10.1103/physrevb.104.l100304
]
[
IF:
3.908
, SJR:
1.537
]
357.
[DOI:
10.1103/physrevapplied.16.l021002
]
[
IF:
4.931
, SJR:
1.534
]
356.
[DOI:
10.1002/mrm.28946
]
[
IF:
3.737
, SJR:
1.504
]
355.
[DOI:
10.1063/5.0048969
]
[
IF:
3.971
, SJR:
1.025
, NI:
0,53
]
354.
[DOI:
10.1063/5.0042403
]
[
IF:
3.971
, SJR:
1.025
, NI:
0,63
]
353.
Metalenses for subwavelength imaging
[DOI:
10.3367/ufnr.2021.03.038952
]
352.
[DOI:
10.3367/ufne.2021.03.038952
]
[
IF:
2.943
, SJR:
0.660
]
351.
[DOI:
10.1063/5.0042557
]
[
IF:
3.971
, SJR:
1.025
, NI:
0,75
]
2020
350.
[DOI:
10.1063/5.0033312
]
[
IF:
3.791
, SJR:
1.182
, NI:
0.59
]
349.
[DOI:
10.1063/5.0032101
]
[
SJR:
0.190
]
348.
[DOI:
10.1002/andp.202000293
]
[
IF:
2.987
, SJR:
1.009
]
347.
[DOI:
10.1002/adom.202001170
]
[
IF:
9.926
, SJR:
2.890
]
346.
[DOI:
10.1002/nbm.4397
]
[
IF:
4.044
, SJR:
1.278
]
345.
[DOI:
10.1063/5.0012006
]
[
IF:
3.791
, SJR:
1.182
, NI:
1
]
344.
[DOI:
10.1016/j.photonics.2020.100835
]
[
IF:
2.453
, SJR:
0.575
]
343.
[DOI:
10.1038/s41467-020-17598-3
]
[
IF:
14.919
, SJR:
5.559
, NI:
0.72
]
342.
[DOI:
10.1016/j.scib.2020.07.008
]
[
IF:
11.780
, SJR:
1.983
]
341.
[DOI:
10.1103/physrevapplied.13.064004
]
[
IF:
4.985
, SJR:
1.883
]
340.
[DOI:
10.1021/acsphotonics.0c00003
]
[
IF:
7.529
, SJR:
2.735
]
339.
[DOI:
10.1088/1742-6596/1461/1/012158
]
[
SJR:
0.227
]
338.
[DOI:
10.1109/tap.2020.2980771
]
[
IF:
4.388
, SJR:
1.652
]
337.
[DOI:
10.1109/piers-spring46901.2019.9017217
]
336.
[DOI:
10.1109/access.2020.2976755
]
[
IF:
3.367
, SJR:
0.587
]
335.
[DOI:
10.1016/j.photonics.2019.100764
]
[
IF:
2.453
, SJR:
0.575
]
334.
333.
[DOI:
10.1109/comcas44984.2019.8958207
]
2019
332.
[DOI:
10.1088/1742-6596/1410/1/012077
]
[
SJR:
0.221
]
331.
[DOI:
10.1109/metamaterials.2019.8900879
]
330.
[DOI:
10.1103/physrevb.100.205136
]
[
IF:
3.575
, SJR:
1.811
]
329.
[DOI:
10.1109/iceaa.2019.8878984
]
328.
[DOI:
10.1002/pssb.201900406
]
[
IF:
1.454
, SJR:
0.519
]
327.
[DOI:
10.1002/adma.201900912
]
[
IF:
27.398
, SJR:
10.571
, NI:
0.27
]
326.
[DOI:
10.1103/physrevlett.122.193905
]
[
IF:
8.385
, SJR:
3.588
, NI:
0.75
]
325.
[DOI:
10.1103/physrevapplied.11.054046
]
[
IF:
4.194
, SJR:
1.866
]
324.
[DOI:
10.3367/UFNe.2017.12.038275
]
[
IF:
2.821
, SJR:
0.921
]
323.
[DOI:
10.1088/1742-6596/1092/1/012083
]
[
SJR:
0.221
]
322.
[DOI:
10.17586/2220-8054-2018-9-5-609-613
]
321.
[DOI:
10.1063/1.5055601
]
[
IF:
3.597
, SJR:
1.343
, NI:
0.37
]
320.
[DOI:
10.1109/apusncursinrsm.2018.8609429
]
2018
319.
[DOI:
10.3367/UFNe.2018.12.038505
]
[
IF:
3.090
, SJR:
0.731
]
318.
,
pp.
155–157
,
2018
[DOI:
10.1109/MetaMaterials.2018.8534085
]
317.
[DOI:
10.1109/metamaterials.2018.8534104
]
316.
[DOI:
10.1088/1742-6596/1092/1/012176
]
[
SJR:
0.241
]
315.
[DOI:
10.1103/PhysRevB.98.174302
]
[
IF:
3.736
, SJR:
1.502
]
314.
[DOI:
10.1134/S0021364018180017
]
[
IF:
1.412
, SJR:
0.500
]
313.
[DOI:
10.1109/ICTON.2018.8473772
]
312.
[DOI:
10.1109/COMCAS.2017.8244854
]
311.
310.
[DOI:
10.1038/s41467-018-03330-9
]
[
IF:
11.878
, SJR:
5.992
]
309.
[DOI:
10.1002/mrm.27140
]
[
IF:
3.858
, SJR:
1.985
]
308.
[DOI:
10.1109/piers.2017.8262011
]
307.
[DOI:
10.1109/piers.2017.8262260
]
306.
[DOI:
10.1109/comcas.2017.8244858
]
305.
[DOI:
10.1038/s41598-018-27327-y
]
[
IF:
4.011
, SJR:
1.414
]
304.
Microwave reflecting focusing metasurface based on water
303.
[DOI:
10.1109/PIERS.2017.8262393
]
302.
[DOI:
10.23919/radio.2017.8242234
]
301.
[DOI:
10.1103/PhysRevB.97.115119
]
[
IF:
3.736
, SJR:
1.502
]
300.
[DOI:
10.1038/s41598-018-25013-7
]
[
IF:
4.011
, SJR:
1.414
]
2017
299.
[DOI:
10.1021/acs.nanolett.7b04542
]
[
IF:
12.080
, SJR:
7.447
]
298.
[DOI:
10.1109/dd.2017.8168050
]
297.
[DOI:
10.1103/PhysRevApplied.9.014020
]
[
IF:
4.782
, SJR:
2.089
]
296.
,
2017
[DOI:
10.1109/MetaMaterials.2017.8107826
]
295.
,
pp.
172 - 174
,
2017
[DOI:
10.1109/MetaMaterials.2017.8107879
]
294.
,
pp.
82-84
,
2017
[DOI:
10.1109/MetaMaterials.2017.8107846
]
293.
,
2017
[DOI:
10.1109/metamaterials.2017.8107858
]
292.
,
2017
[DOI:
doi: 10.1109/MetaMaterials.2017.8107800
]
291.
[DOI:
doi: 10.1063/1.4998062
]
[
SJR:
0.165
]
290.
[DOI:
10.1016/j.jmr.2017.11.013
]
[
IF:
2.586
, SJR:
1.182
]
289.
[DOI:
10.1002/lpor.201700227
]
[
IF:
8.529
, SJR:
4.228
]
288.
,
2017
[DOI:
doi: 10.1109/APUSNCURSINRSM.2017.8072791
]
287.
[DOI:
https://doi.org/10.1063/1.4998107
]
[
SJR:
0.165
]
286.
[DOI:
10.1063/1.4998078
]
[
SJR:
0.165
]
285.
[DOI:
10.1063/1.4998131
]
[
SJR:
0.165
]
284.
[DOI:
10.1063/1.4998132
]
[
SJR:
0.165
]
283.
[DOI:
10.1063/1.4998066
]
[
SJR:
0.165
]
282.
[DOI:
10.1109/WPT.2017.7953832
]
281.
[DOI:
10.1063/1.4998040
]
[
SJR:
0.165
]
280.
[DOI:
10.1063/1.4998028
]
[
SJR:
0.165
]
279.
[DOI:
10.1063/1.4998043
]
[
SJR:
0.165
]
278.
[DOI:
10.1109/LAWP.2017.2736506
]
[
IF:
3.448
, SJR:
1.047
]
277.
Colossal permittivity resonators for wireless power transfer systems
[DOI:
10.23919/EuCAP.2017.7928275
]
276.
[DOI:
10.1103/PhysRevB.96.035146
]
[
IF:
3.813
, SJR:
2.339
]
275.
[DOI:
10.23919/EuCAP.2017.7928190
]
274.
[DOI:
10.1109/TAP.2017.2717964
]
[
IF:
4.130
, SJR:
1.309
]
273.
[DOI:
10.48550/arXiv.1705.04236
]
272.
[DOI:
10.1103/PhysRevB.95.165119
]
[
IF:
3.813
, SJR:
2.339
]
271.
[DOI:
10.1021/acs.nanolett.7b00183
]
[
IF:
12.080
, SJR:
7.447
]
270.
[DOI:
10.1364/JOSAB.34.000D18
]
[
IF:
1.843
, SJR:
0.850
]
269.
[DOI:
10.1038/s41598-017-00724-5
]
[
IF:
4.122
, SJR:
1.533
]
268.
Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging
[DOI:
10.1038/s41598-017-01932-9
]
[
IF:
4.122
, SJR:
1.533
]
267.
[DOI:
10.1063/1.4981396
]
[
IF:
12.894
, SJR:
4.156
]
266.
[DOI:
10.1021/acsphotonics.6b00727
]
[
IF:
6.880
, SJR:
3.376
]
265.
[DOI:
10.1016/j.photonics.2017.02.003
]
[
IF:
1.705
, SJR:
0.535
]
264.
[DOI:
10.1088/1742-6596/917/6/062060
]
[
SJR:
0.240
]
263.
[DOI:
10.1109/DD.2017.8168025
]
262.
[DOI:
10.1088/1742-6596/917/6/062054
]
[
SJR:
0.240
]
261.
[DOI:
10.1002/adma.201606034
]
[
IF:
21.950
, SJR:
10.579
]
260.
[DOI:
10.1109/eumc.2016.7824453
]
259.
[DOI:
10.1109/LAWP.2016.2647383
]
[
IF:
3.448
, SJR:
1.047
]
258.
[DOI:
10.1021/acsphotonics.7b00924
]
[
IF:
6.880
, SJR:
3.376
]
2016
257.
[DOI:
10.1109/RADIO.2016.7772007
]
256.
[DOI:
10.1063/1.4971185
]
[
IF:
3.411
, SJR:
1.673
]
255.
[DOI:
10.1002/andp.201600272
]
[
IF:
3.039
, SJR:
1.469
]
254.
,
pp.
151-153
,
2016
[DOI:
10.1109/MetaMaterials.2016.7746469
]
253.
,
pp.
118-120
,
2016
[DOI:
10.1109/MetaMaterials.2016.7746457
]
252.
Nonlinear all-dielectric nanoantenna reconfigured by electron-hole plasma
251.
[DOI:
10.1109/APS.2016.7695785
]
250.
,
pp.
58-60
,
2016
[DOI:
10.1109/MetaMaterials.2016.7746435
]
249.
[DOI:
10.1109/DD.2016.7756857
]
248.
[DOI:
10.1109/DD.2016.7756811
]
247.
,
pp.
241-243
,
2016
[DOI:
10.1109/MetaMaterials.2016.7746502
]
246.
[DOI:
10.1109/DD.2016.7756842
]
245.
[DOI:
10.1109/DD.2016.7756894
]
244.
[DOI:
10.1109/DD.2016.7756826
]
243.
[DOI:
10.1109/DD.2016.7756856
]
242.
[DOI:
10.1109/DD.2016.7756809
]
241.
[DOI:
10.1109/DD.2016.7756895
]
240.
[DOI:
10.1109/DD.2016.7756833
]
239.
[DOI:
10.1002/lpor.201600199
]
[
IF:
8.434
, SJR:
4.013
]
238.
[DOI:
10.1109/metamaterials.2016.7746426
]
237.
[DOI:
10.1109/APS.2016.7695718
]
236.
[DOI:
10.1109/APS.2016.7696405
]
235.
[DOI:
10.1109/APS.2016.7695896
]
234.
[DOI:
10.1038/srep35516
]
[
IF:
4.259
, SJR:
1.692
]
233.
[DOI:
10.1002/pssr.201600289
]
[
IF:
2.578
, SJR:
1.150
]
232.
[DOI:
10.1002/lpor.201600164
]
[
IF:
8.434
, SJR:
4.013
]
231.
[DOI:
10.1088/1742-6596/741/1/012112
]
[
SJR:
0.252
]
230.
[DOI:
10.1088/1742-6596/741/1/012119
]
[
SJR:
0.252
]
229.
[DOI:
10.1109/lo.2016.7550034
]
228.
[DOI:
10.1039/C6NR04860A
]
[
IF:
7.367
, SJR:
2.789
]
227.
,
vol.
33
,
pp.
1910-1916
,
2016
[DOI:
10.1364/JOSAA.33.001910
]
[
IF:
1.457
, SJR:
0.918
]
226.
,
pp.
439-442
,
2016
[DOI:
10.1109/MetaMaterials.2016.7746428
]
225.
[DOI:
10.3367/UFNr.2016.02.037703
]
[
IF:
2.301
, SJR:
0.848
]
224.
[DOI:
10.1021/acsphotonics.6b00358
]
[
IF:
6.756
, SJR:
3.471
]
223.
[DOI:
10.1134/S1063783416070301
]
[
IF:
0.860
, SJR:
0.429
]
222.
[DOI:
10.1088/1742-6596/741/1/012140
]
[
SJR:
0.252
]
221.
[DOI:
10.1088/1742-6596/741/1/012152
]
[
SJR:
0.252
]
220.
[DOI:
10.1063/1.4955272
]
[
IF:
3.411
, SJR:
1.673
]
219.
[DOI:
10.1063/1.4954347
]
[
SJR:
0.180
]
218.
[DOI:
10.1364/CLEO_AT.2016.JW2A.17
]
[
SJR:
0.102
]
217.
[DOI:
10.1063/1.4953023
]
[
IF:
3.411
, SJR:
1.673
]
216.
[DOI:
10.1103/PhysRevB.93.201115
]
[
IF:
3.836
]
215.
[DOI:
10.1063/1.4952740
]
[
IF:
3.411
, SJR:
1.673
]
214.
[DOI:
10.1016/j.physrep.2016.04.004
]
[
IF:
16.240
, SJR:
8.052
]
213.
[DOI:
10.1103/PhysRevB.93.165125
]
[
IF:
3.836
]
212.
[DOI:
10.1117/12.2223721
]
[
SJR:
0.240
]
211.
[DOI:
10.1117/12.2224441
]
[
SJR:
0.240
]
210.
[DOI:
10.1039/C5NR07965A
]
[
IF:
7.367
, SJR:
2.789
]
209.
[DOI:
10.1103/PhysRevA.93.033855
]
[
IF:
2.925
]
208.
[DOI:
10.1088/1742-6596/690/1/012034
]
[
SJR:
0.252
]
207.
[DOI:
10.1088/1612-2011/13/4/046001
]
[
IF:
2.537
, SJR:
0.942
]
206.
[DOI:
10.1088/1742-6596/690/1/012021
]
[
SJR:
0.252
]
205.
[DOI:
10.1088/1742-6596/690/1/012020
]
[
SJR:
0.252
]
204.
[DOI:
10.1002/adma.201505346
]
[
IF:
19.791
, SJR:
9.184
]
203.
[DOI:
10.1038/srep22136
]
[
IF:
4.259
, SJR:
1.692
]
202.
[DOI:
10.1038/srep22546
]
[
IF:
4.259
, SJR:
1.692
]
201.
[DOI:
10.1364/OL.41.000749
]
[
IF:
3.416
, SJR:
1.769
]
200.
[DOI:
10.1063/1.4939789
]
[
IF:
3.411
, SJR:
1.673
]
199.
[DOI:
10.1002/adma.201504270
]
[
IF:
19.791
, SJR:
9.184
]
2015
198.
,
pp.
517-519
,
2015
[DOI:
10.1109/MetaMaterials.2015.7342508
]
197.
[DOI:
10.1039/C5NR06742A
]
[
IF:
7.760
, SJR:
2.770
]
196.
[DOI:
10.1103/PhysRevB.92.245413
]
[
IF:
3.718
]
195.
[DOI:
10.1103/PhysRevB.92.214436
]
[
IF:
3.718
]
194.
[DOI:
10.1002/lpor.201500119
]
[
IF:
7.486
, SJR:
4.205
]
193.
[DOI:
10.1038/ncomms10102
]
[
IF:
11.329
, SJR:
6.287
]
192.
[DOI:
10.1364/OE.23.030730
]
[
IF:
3.148
, SJR:
1.910
]
191.
190.
[DOI:
10.1109/DD.2015.7354885
]
189.
[DOI:
10.1109/DD.2015.7354876
]
188.
[DOI:
10.1109/DD.2015.7354837
]
187.
[DOI:
10.1109/DD.2015.7354854
]
186.
[DOI:
10.1109/DD.2015.7354867
]
185.
[DOI:
10.1109/DD.2015.7354879
]
184.
[DOI:
10.1109/DD.2015.7354859
]
183.
[DOI:
10.1109/IMOC.2015.7369228
]
182.
[DOI:
10.1109/IMOC.2015.7369199
]
181.
,
pp.
1-2, 2-4
,
2015
[DOI:
10.1109/COMCAS.2015.7360417
]
180.
[DOI:
10.1039/C5NR05468K
]
[
IF:
7.760
, SJR:
2.770
]
179.
[DOI:
10.1063/1.4934757
]
[
IF:
3.142
, SJR:
1.499
]
178.
[DOI:
10.1103/PhysRevB.92.155415
]
[
IF:
3.718
]
177.
,
vol.
28
,
pp.
220-221
,
2015
[DOI:
10.1007/s10334-015-0487-2
]
176.
[DOI:
10.1134/S0030400X15100240
]
[
IF:
0.644
, SJR:
0.273
]
175.
[DOI:
10.1109/RADIO.2015.7323400
]
174.
[DOI:
10.1109/TAP.2015.2479676
]
[
IF:
2.053
, SJR:
1.743
]
173.
,
pp.
364-366
,
2015
[DOI:
10.1109/MetaMaterials.2015.7342452
]
172.
[DOI:
10.1103/PhysRevLett.115.119701
]
[
IF:
7.645
, SJR:
4.656
]
171.
[DOI:
10.1021/acs.nanolett.5b02534
]
[
IF:
13.779
, SJR:
8.359
]
170.
[DOI:
10.1038/srep12956
]
[
IF:
5.228
, SJR:
2.034
]
169.
[DOI:
10.1103/PhysRevB.92.085107
]
[
IF:
3.718
]
168.
[DOI:
10.1103/PhysRevB.92.041304
]
[
IF:
3.718
]
167.
[DOI:
10.1103/PhysRevB.92.045127
]
[
IF:
3.718
]
166.
Effect of Purcell enhancement on spin-flip induced fluorescence contrast in diamond nitrogen-vacancy center ensembles
165.
164.
163.
162.
[DOI:
10.1103/PhysRevA.91.063830
]
[
IF:
2.765
]
161.
Enhanced emission extraction and selective excitation of NV centers with all–dielectric nanoantennas
[DOI:
10.1002/lpor.201400453
]
[
IF:
7.486
, SJR:
4.205
]
160.
[DOI:
10.1103/PhysRevB.91.205126
]
[
IF:
3.718
]
159.
[DOI:
10.1063/1.4921440
]
[
IF:
2.101
, SJR:
0.821
]
158.
[DOI:
10.1117/12.2176880
]
[
SJR:
0.248
]
157.
[DOI:
10.1103/PhysRevLett.114.185501
]
[
IF:
7.645
, SJR:
4.656
]
156.
[DOI:
10.1063/1.4919589
]
[
IF:
3.142
, SJR:
1.499
]
155.
[DOI:
10.1063/1.4919536
]
[
IF:
3.142
, SJR:
1.499
]
154.
[DOI:
10.1103/PhysRevB.91.125426
]
[
IF:
3.718
, SJR:
2.762
]
153.
[DOI:
10.1038/srep08774
]
[
IF:
5.228
, SJR:
2.034
]
152.
[DOI:
10.1103/PhysRevLett.114.123901
]
[
IF:
7.645
, SJR:
4.656
]
151.
[DOI:
10.3367/ufne.0185.201502e.0181
]
[
IF:
2.126
, SJR:
0.867
]
150.
[DOI:
10.3390/cryst5010061
]
[
IF:
2.075
, SJR:
0.567
]
149.
[DOI:
10.1016/j.photonics.2014.12.005
]
[
IF:
1.474
, SJR:
0.739
]
148.
[DOI:
10.1103/PhysRevB.92.195127
]
[
IF:
3.718
, SJR:
2.762
]
2014
147.
146.
[DOI:
10.1039/C4NR04872E
]
[
IF:
7.394
, SJR:
2.646
]
145.
[DOI:
10.1063/1.4900529
]
[
IF:
2.183
, SJR:
1.039
]
144.
[DOI:
10.1134/s1063783414110262
]
[
IF:
0.821
, SJR:
0.465
]
143.
[DOI:
10.1063/1.4901903
]
[
IF:
3.302
, SJR:
1.861
]
142.
[DOI:
10.1063/1.4901264
]
[
IF:
3.302
, SJR:
1.861
]
141.
[DOI:
10.1002/pssr.201409396
]
[
IF:
2.343
, SJR:
1.164
]
140.
[DOI:
10.1103/PhysRevB.90.115155
]
[
IF:
3.736
, SJR:
2.813
]
139.
[DOI:
10.1103/PhysRevB.90.115136
]
[
IF:
3.736
, SJR:
2.813
]
138.
[DOI:
10.3390/cryst4030417
]
[
SJR:
0.355
]
137.
[DOI:
10.1364/AO.53.006096
]
[
IF:
1.784
, SJR:
1.047
]
136.
[DOI:
10.1117/12.2061675
]
[
SJR:
0.236
]
135.
[DOI:
10.1103/PhysRevA.90.023854
]
[
IF:
2.808
, SJR:
2.305
]
134.
,
pp.
52-54
,
2014
[DOI:
10.1109/MetaMaterials.2014.6948591
]
133.
,
pp.
43-45
,
2014
[DOI:
10.1109/MetaMaterials.2014.6948588
]
132.
,
pp.
388-390
,
2014
[DOI:
10.1109/MetaMaterials.2014.6948570
]
131.
,
pp.
433-436
,
2014
[DOI:
10.1109/MetaMaterials.2014.6948586
]
130.
,
pp.
391-393
,
2014
[DOI:
10.1109/MetaMaterials.2014.6948571
]
129.
[DOI:
10.1134/S002136401411006X
]
[
IF:
1.359
, SJR:
0.762
]
128.
[DOI:
10.1134/s0021364014090112
]
[
IF:
1.359
, SJR:
0.762
]
127.
[DOI:
10.1080/09500340.2014.940019
]
[
IF:
1.008
, SJR:
0.607
]
126.
125.
[DOI:
10.1103/PhysRevA.90.013812
]
[
IF:
2.808
, SJR:
2.305
]
124.
[DOI:
10.1103/PhysRevB.90.035106
]
[
IF:
3.736
, SJR:
2.813
]
123.
[DOI:
10.1364/JOSAB.31.001753
]
[
IF:
1.806
, SJR:
1.348
]
122.
[DOI:
10.1103/PhysRevB.89.245414
]
[
IF:
3.736
, SJR:
2.813
]
121.
[DOI:
10.1364/CLEO_QELS.2014.FTu3C.2
]
[
SJR:
0.102
]
120.
[DOI:
10.1364/CLEO_QELS.2014.FTu2C.3
]
[
SJR:
0.102
]
119.
[DOI:
10.1364/CLEO_QELS.2014.FTu2K.7
]
[
SJR:
0.102
]
118.
[DOI:
10.1134/S1064226914040111
]
[
IF:
0.388
, SJR:
0.286
]
117.
[DOI:
10.1109/DD.2014.7036442
]
116.
[DOI:
10.1109/DD.2014.7036431
]
115.
[DOI:
10.1109/DD.2014.7036441
]
114.
113.
[DOI:
10.1364/OE.22.010693
]
[
IF:
3.488
, SJR:
2.313
]
112.
[DOI:
10.1063/1.4872163
]
[
IF:
3.302
, SJR:
1.861
]
111.
[DOI:
10.1039/C4NR01231C
]
[
IF:
7.394
, SJR:
2.646
]
110.
[DOI:
10.1088/1757-899X/67/1/012008
]
[
SJR:
0.205
]
109.
[DOI:
10.1063/1.4869817
]
[
IF:
3.302
, SJR:
1.861
]
108.
[DOI:
10.1016/j.photonics.2014.03.003
]
[
IF:
1.350
, SJR:
0.850
]
107.
[DOI:
10.1103/PhysRevA.89.032508
]
[
IF:
2.808
]
106.
105.
[DOI:
10.1038/ncomms4226
]
[
IF:
11.470
, SJR:
6.410
]
104.
[DOI:
10.1103/PhysRevB.89.035435
]
[
IF:
3.736
]
103.
[DOI:
10.1063/1.4858969
]
[
IF:
3.302
, SJR:
1.861
]
102.
[DOI:
10.1063/1.4861388
]
[
IF:
3.302
, SJR:
1.861
]
101.
2013
100.
[DOI:
10.1038/nphoton.2013.243
]
[
IF:
29.958
, SJR:
13.684
]
99.
[DOI:
10.1103/PhysRevB.88.195422
]
[
IF:
3.664
]
98.
[DOI:
10.1063/1.4832056
]
[
IF:
3.515
, SJR:
2.146
]
97.
[DOI:
10.1103/PhysRevB.88.205106
]
[
IF:
3.664
]
96.
[DOI:
10.1002/lpor.201300109
]
[
IF:
9.313
, SJR:
5.132
]
95.
,
pp.
43525
,
2013
[DOI:
10.1109/ICECom.2013.6684721
]
94.
,
pp.
43556
,
2013
[DOI:
10.1109/ICECom.2013.6684722
]
93.
[DOI:
10.1063/1.4824478
]
[
IF:
3.515
, SJR:
2.146
]
92.
91.
,
pp.
190-192
,
2013
[DOI:
10.1109/MetaMaterials.2013.6808996
]
90.
,
pp.
34-36
,
2013
[DOI:
10.1109/metamaterials.2013.6808944
]
89.
,
pp.
331-333
,
2013
[DOI:
10.1109/metamaterials.2013.6809043
]
88.
,
pp.
346-348
,
2013
[DOI:
10.1109/MetaMaterials.2013.6809048
]
87.
,
pp.
49-51
,
2013
[DOI:
10.1109/MetaMaterials.2013.6808949
]
86.
,
pp.
526-528
,
2013
[DOI:
10.1109/metamaterials.2013.6809108
]
85.
[DOI:
10.1117/12.2025961
]
[
SJR:
0.248
]
84.
[DOI:
10.1063/1.4820573
]
[
IF:
2.185
, SJR:
1.155
]
83.
[DOI:
10.1117/12.2023857
]
[
SJR:
0.248
]
82.
[DOI:
10.1109/IMOC.2013.6646485
]
81.
[DOI:
10.1109/IMOC.2013.6646491
]
80.
[DOI:
10.1063/1.4817513
]
[
IF:
3.515
, SJR:
2.146
]
79.
[DOI:
10.1103/PhysRevLett.111.036804
]
[
IF:
7.728
, SJR:
5.675
]
78.
[DOI:
10.1364/IPRSN.2013.IM1B.1
]
77.
[DOI:
10.1103/PhysRevB.87.075416
]
[
IF:
3.664
]
76.
[DOI:
10.1109/APS.2013.6710730
]
[
SJR:
0.223
]
75.
[DOI:
10.1109/APS.2013.6710905
]
[
SJR:
0.223
]
74.
[DOI:
10.1109/APS.2013.6711255
]
[
SJR:
0.223
]
73.
72.
[DOI:
10.1134/S0021364013090063
]
[
IF:
1.364
, SJR:
0.795
]
71.
70.
[DOI:
10.1364/OE.21.00A714
]
[
IF:
3.525
, SJR:
2.337
]
69.
[DOI:
10.1364/OE.21.014907
]
[
IF:
3.525
, SJR:
2.337
]
68.
[DOI:
10.3367/UFNe.0183.201306a.0561
]
[
IF:
1.913
, SJR:
0.863
]
67.
[DOI:
10.1109/DD.2013.6712800
]
66.
[DOI:
10.1002/adma.201300840
]
[
IF:
15.409
, SJR:
7.564
]
65.
64.
[DOI:
10.1134/S002136401305007X
]
[
IF:
1.364
, SJR:
0.795
]
63.
[DOI:
10.1103/PhysRevB.87.115139
]
[
IF:
3.664
]
62.
[DOI:
10.1103/PhysRevB.87.035136
]
[
IF:
3.664
]
61.
[DOI:
10.1364/OE.21.001593
]
[
IF:
3.525
, SJR:
2.337
]
60.
[DOI:
10.1103/PhysRevB.87.024408
]
[
IF:
3.664
]
59.
[DOI:
10.2528/PIER13031910
]
[
IF:
5.590
, SJR:
0.537
]
2012
58.
[DOI:
10.1063/1.4768945
]
[
IF:
3.794
, SJR:
2.570
]
57.
56.
[DOI:
10.1038/srep00873
]
[
IF:
2.927
, SJR:
1.531
]
55.
[DOI:
10.1155/2012/514270
]
54.
53.
52.
[DOI:
10.1063/1.4758287
]
[
IF:
2.210
, SJR:
1.312
]
51.
[DOI:
10.1103/PhysRevA.86.033826
]
[
IF:
3.042
]
50.
[DOI:
10.1103/PhysRevB.86.115420
]
[
IF:
3.767
]
49.
[DOI:
10.1063/1.4750083
]
[
SJR:
0.161
]
48.
[DOI:
10.1103/PhysRevA.86.023848
]
[
IF:
3.042
]
47.
[DOI:
10.1063/1.4750129
]
[
SJR:
0.161
]
46.
[DOI:
10.1364/OE.20.020599
]
[
IF:
3.546
, SJR:
2.562
]
45.
44.
[DOI:
10.1103/PhysRevA.86.023819
]
[
IF:
3.042
]
43.
[DOI:
10.1134/S0021364012120156
]
[
IF:
1.524
, SJR:
1.031
]
42.
[DOI:
10.1103/PhysRevB.86.035148
]
[
IF:
3.767
]
41.
[DOI:
10.1109/APS.2012.6349225
]
40.
[DOI:
10.1109/APS.2012.6348088
]
39.
[DOI:
10.1002/adma.201200931
]
[
IF:
14.829
, SJR:
8.558
]
38.
[DOI:
10.1364/QELS.2012.QTh1A.5
]
[
SJR:
0.102
]
37.
[DOI:
10.1117/12.921762
]
[
SJR:
0.260
]
36.
[DOI:
10.1063/1.4719209
]
[
IF:
3.794
, SJR:
2.570
]
35.
[DOI:
10.1103/PhysRevLett.108.093901
]
[
IF:
7.943
, SJR:
6.292
]
34.
[DOI:
10.1103/PhysRevB.85.033105
]
[
IF:
3.767
]
33.
[DOI:
10.1364/OE.20.002733
]
[
IF:
3.546
, SJR:
2.562
]
32.
[DOI:
10.1016/j.physleta.2011.11.001
]
[
IF:
1.766
, SJR:
0.787
]
31.
[DOI:
10.1109/LAWP.2012.2195151
]
[
IF:
1.667
, SJR:
0.877
]
2011
30.
[DOI:
10.1063/1.3671617
]
[
IF:
3.844
, SJR:
2.814
]
29.
[DOI:
10.1103/PhysRevA.84.065801
]
[
IF:
2.878
]
28.
[DOI:
10.1016/j.optcom.2011.11.050
]
[
IF:
1.486
, SJR:
0.811
]
27.
[DOI:
10.1134/S0021364011200070
]
[
IF:
1.352
, SJR:
0.771
]
26.
[DOI:
10.1002/pssr.201105475
]
[
IF:
2.815
, SJR:
1.840
]
25.
[DOI:
10.1002/pssr.201105446
]
[
IF:
2.815
, SJR:
1.840
]
24.
[DOI:
10.1063/1.3643152
]
[
IF:
3.844
, SJR:
2.814
]
23.
[DOI:
10.1103/PhysRevB.84.115438
]
[
IF:
3.691
]
22.
[DOI:
10.1103/PhysRevA.84.023807
]
[
IF:
2.878
]
21.
[DOI:
10.1002/pssr.201105350
]
[
IF:
2.815
, SJR:
1.840
]
20.
[DOI:
10.1117/1.3611407
]
[
IF:
1.570
, SJR:
0.998
]
19.
[DOI:
10.1103/PhysRevB.84.045424
]
[
IF:
3.691
]
18.
17.
[DOI:
10.1117/1.3577703
]
[
IF:
1.570
, SJR:
0.998
]
16.
[DOI:
10.1134/S0030400X11040023
]
[
IF:
0.610
, SJR:
0.277
]
15.
[DOI:
10.1088/1367-2630/13/3/033026
]
[
IF:
4.177
, SJR:
3.489
]
2010
14.
[DOI:
10.1134/S0030400X10120192
]
[
IF:
0.571
, SJR:
0.273
]
13.
[DOI:
10.1063/1.3516161
]
[
IF:
3.841
, SJR:
2.920
]
12.
[DOI:
10.1088/1367-2630/12/10/103045
]
[
IF:
3.849
, SJR:
3.405
]
11.
[DOI:
10.1103/PhysRevB.82.113408
]
[
IF:
3.774
]
10.
[DOI:
10.1117/12.860175
]
[
SJR:
0.244
]
9.
[DOI:
10.1117/12.860116
]
[
SJR:
0.244
]
8.
[DOI:
10.1117/12.860630
]
[
SJR:
0.244
]
7.
[DOI:
10.1134/S0030400X10070143
]
[
IF:
0.571
, SJR:
0.273
]
6.
[DOI:
10.1364/OL.35.000142
]
[
IF:
3.318
, SJR:
2.637
]
5.
Study of reflection and transmission coefficients for an array of metal wires depending on their radius (in Russian)
4.
Nonlinear and tunable metamaterials (in Russian)
,
vol.
2
,
pp.
78-91
,
2010
3.
[DOI:
10.1049/el.2010.1712
]
[
IF:
1.004
, SJR:
0.603
]
2.
1.
Nonlocal homogenization theory of multilayered metal-dielectric nanostructured optical metamaterials (in Russian)
,
vol.
2
,
pp.
92-112
,
2010
Курсы отсутствуют.
Название патента | Авторы | Тип | Год |
---|---|---|---|
Wireless power transmission device | Aigerim Jandaliyeva, Viktor Puchnin, Alena Shchelokova, Pavel Belov | Изобретение | 2023 |