Valentin Milichko
Main position
Main position
Assistant Professor
Email
ariesval@mail.ru
v.milichko@metalab.ifmo.ru
Researcher ID
Researcher ID
N-7112-2016
Scopus Author ID
Scopus id
55436864100
Google scholar link
Skype
valentisha88
CV
Papers
Impact Factor
Scientific Journal Ranking
2024
146.
[DOI:
10.1021/acs.jpcc.4c04885
]
[
IF:
4.189
, SJR:
1.477
]
145.
[DOI:
10.1039/d4ta03126a
]
[
IF:
12.898
, SJR:
3.637
]
144.
[DOI:
10.1021/acsabm.4c00765
]
[
IF:
3.952
, SJR:
0.900
]
143.
[DOI:
10.1002/adom.202401002
]
[
IF:
9.926
, SJR:
2.890
]
142.
[DOI:
10.1038/s43246-024-00573-6
]
[
IF:
5.750
, SJR:
2.127
]
141.
Modification and Ablation Thresholds of Hkust-1 Mof Films by Laser Pulses
2024
[DOI:
10.2139/ssrn.4887034
]
140.
[DOI:
10.1016/j.optmat.2024.115666
]
[
IF:
3.080
, SJR:
0.598
]
139.
Tailoring the nonlinear optical response of high-entropy alloy thin films through compositional and structural modification
[DOI:
10.1117/12.3016680
]
138.
From grayscale towards multi-color laser printing inside non-linear metal-organic framework microcrystals
[DOI:
10.1117/12.3022176
]
137.
[DOI:
10.1007/s12598-024-02696-8
]
[
IF:
5.658
, SJR:
0.526
]
136.
[DOI:
10.1038/s43246-024-00485-5
]
[
IF:
5.750
, SJR:
2.127
]
135.
[DOI:
10.1021/acs.jpclett.3c03639
]
[
IF:
6.888
, SJR:
1.850
]
134.
[DOI:
10.1002/adfm.202311235
]
[
IF:
19.924
, SJR:
5.000
]
133.
[DOI:
10.1039/d4dt00038b
]
[
IF:
4.390
, SJR:
0.980
]
132.
[DOI:
10.1016/j.photonics.2023.101225
]
[
IF:
3.164
, SJR:
0.473
]
2023
131.
[DOI:
10.1002/adfm.202309690
]
[
IF:
18.808
, SJR:
6.069
]
130.
[DOI:
10.1016/j.photonics.2023.101222
]
[
IF:
3.008
, SJR:
0.553
]
129.
[DOI:
10.1039/d3nr05117j
]
[
IF:
8.307
, SJR:
1.744
]
128.
[DOI:
10.1021/acsaom.3c00340
]
127.
Metal-organic frameworks as competitive non-linear optical materials: light conversion and structural modification
[DOI:
10.1117/12.2691151
]
126.
[DOI:
10.1016/j.photonics.2023.101206
]
[
IF:
3.164
, SJR:
0.473
]
125.
[DOI:
10.1002/adpr.202300173
]
[
IF:
3.700
]
124.
[DOI:
10.1021/cbmi.3c00087
]
123.
[DOI:
10.1016/j.photonics.2023.101198
]
[
IF:
3.164
, SJR:
0.473
]
122.
[DOI:
10.1021/acsami.3c10193
]
[
IF:
10.383
, SJR:
2.143
]
121.
[DOI:
10.1002/smtd.202300752
]
[
IF:
15.367
, SJR:
3.629
]
120.
[DOI:
10.1002/adom.202300881
]
[
IF:
9.926
, SJR:
2.890
]
119.
[DOI:
10.1039/d3cc02180g
]
[
IF:
6.222
, SJR:
1.837
]
118.
[DOI:
10.1016/j.photonics.2023.101168
]
[
IF:
3.164
, SJR:
0.473
]
117.
[DOI:
10.1007/s11090-023-10349-4
]
[
IF:
3.556
, SJR:
0.513
]
116.
[DOI:
10.1016/j.nanoso.2023.100996
]
[
IF:
5.914
, SJR:
0.736
]
115.
[DOI:
10.1016/j.photonics.2023.101145
]
[
IF:
3.164
, SJR:
0.473
]
114.
[DOI:
10.1039/d2sm01590k
]
[
IF:
3.713
, SJR:
0.990
]
2022
113.
[DOI:
10.1016/j.cej.2022.139450
]
[
IF:
16.744
, SJR:
2.419
]
112.
[DOI:
10.1021/acs.nanolett.2c01770
]
[
IF:
12.262
, SJR:
3.761
]
111.
[DOI:
10.1021/acs.inorgchem.2c01978
]
[
IF:
5.436
, SJR:
1.121
]
110.
[DOI:
10.3390/cryst12060846
]
[
IF:
2.670
, SJR:
0.459
]
109.
[DOI:
10.1021/acsanm.1c04308
]
[
IF:
6.140
, SJR:
1.178
]
108.
[DOI:
10.1021/acs.jpclett.1c03630
]
[
IF:
6.710
, SJR:
2.976
]
2021
107.
[DOI:
10.1016/j.photonics.2021.100990
]
[
IF:
3.008
, SJR:
0.553
]
106.
[DOI:
10.15826/chimtech.2021.8.4.11
]
105.
[DOI:
10.15826/chimtech.2021.8.4.11
]
104.
[DOI:
10.1088/1742-6596/2015/1/012059
]
[
IF:
0.550
, SJR:
0.210
]
103.
[DOI:
10.1088/1742-6596/2015/1/012151
]
[
IF:
0.550
, SJR:
0.210
]
102.
[DOI:
10.1002/admi.202101196
]
[
IF:
6.389
, SJR:
1.421
]
101.
[DOI:
10.1002/adfm.202107949
]
[
IF:
19.924
, SJR:
5.000
]
100.
[DOI:
10.15826/chimtech.2021.8.3.04
]
[
SJR:
0.130
]
99.
[DOI:
10.1021/acs.jpclett.1c01867
]
[
IF:
6.710
, SJR:
2.976
, NI:
0.9
]
98.
[DOI:
10.1002/lpor.202000421
]
[
IF:
10.947
, SJR:
3.172
]
97.
[DOI:
10.1002/anie.202101188
]
[
IF:
15.336
, SJR:
5.831
, NI:
0,45
]
2020
96.
[DOI:
10.1063/5.0031912
]
[
SJR:
0.190
]
95.
[DOI:
10.1063/5.0031986
]
[
SJR:
0.190
]
94.
[DOI:
10.1063/5.0031913
]
[
SJR:
0.190
]
93.
[DOI:
10.1063/5.0031914
]
[
SJR:
0.190
]
92.
[DOI:
10.3390/nano10061036
]
[
IF:
5.076
, SJR:
0.919
]
91.
[DOI:
10.1002/anie.202004293
]
[
IF:
12.959
, SJR:
5.438
, NI:
0.6
]
90.
[DOI:
10.1038/s41598-020-58020-8
]
[
IF:
4.380
, SJR:
1.240
]
89.
[DOI:
10.1103/physrevapplied.13.014021
]
[
IF:
4.985
, SJR:
1.883
]
88.
[DOI:
10.1515/nanoph-2019-0423
]
[
IF:
8.449
, SJR:
2.717
]
2019
87.
[DOI:
10.1002/adfm.201908292
]
[
IF:
16.836
, SJR:
5.875
, NI:
0.33
]
86.
[DOI:
10.1002/advs.201900506
]
[
IF:
15.840
, SJR:
5.133
]
85.
[DOI:
10.1134/s0021364019130010
]
[
IF:
1.399
, SJR:
0.583
]
84.
[DOI:
10.1039/c9nr02167a
]
[
IF:
6.895
, SJR:
2.180
]
83.
[DOI:
10.1039/c9nr00616h
]
[
IF:
6.895
, SJR:
2.180
]
82.
[DOI:
10.1002/lpor.201800274
]
[
IF:
10.655
, SJR:
4.014
]
2018
81.
[DOI:
10.1088/1742-6596/1092/1/012091
]
[
SJR:
0.241
]
80.
[DOI:
10.1088/1742-6596/1092/1/012090
]
[
SJR:
0.241
]
79.
[DOI:
10.1088/1742-6596/1092/1/012088
]
[
SJR:
0.241
]
78.
[DOI:
10.1088/1742-6596/1092/1/012089
]
[
SJR:
0.241
]
77.
[DOI:
10.1098/rsos.172465
]
[
IF:
2.515
, SJR:
1.131
]
76.
[DOI:
10.1039/C7NR07953B
]
[
IF:
6.970
, SJR:
2.396
]
75.
The conformation of BSA adsorbed to the surface of single all-dielectric nanoparticles following light-induced heating
[DOI:
10.1002/jbio.201700322
]
[
IF:
3.763
, SJR:
1.039
]
74.
[DOI:
10.1039/c8tb00072g
]
[
IF:
5.047
, SJR:
1.354
]
73.
[DOI:
10.1109/piers.2017.8261981
]
72.
[DOI:
10.1109/piers.2017.8261982
]
71.
[DOI:
10.1109/piers.2017.8262339
]
70.
[DOI:
10.1109/piers.2017.8261891
]
69.
[DOI:
10.1109/comcas.2017.8244856
]
68.
[DOI:
10.1109/comcas.2017.8244858
]
2017
67.
[DOI:
10.1021/acs.nanolett.7b04542
]
[
IF:
12.080
, SJR:
7.447
]
66.
[DOI:
10.1002/adma.201705261
]
[
IF:
21.950
, SJR:
10.579
]
65.
[DOI:
10.1109/dd.2017.8168050
]
64.
,
pp.
403-405
,
2017
[DOI:
10.1109/MetaMaterials.2017.8107828
]
63.
[DOI:
10.1063/1.4998103
]
[
SJR:
0.165
]
62.
[DOI:
10.1088/1742-6596/917/6/062017
]
[
SJR:
0.240
]
61.
[DOI:
10.1088/1742-6596/929/1/012053
]
[
SJR:
0.240
]
60.
[DOI:
10.1088/1742-6596/917/6/062002
]
[
SJR:
0.240
]
59.
[DOI:
10.1002/lpor.201700227
]
[
IF:
8.529
, SJR:
4.228
]
58.
[DOI:
10.1063/1.4998054
]
[
SJR:
0.165
]
57.
[DOI:
10.1063/1.4998072
]
[
SJR:
0.165
]
56.
[DOI:
10.1063/1.4998104
]
[
SJR:
0.165
]
55.
[DOI:
10.1063/1.4998078
]
[
SJR:
0.165
]
54.
[DOI:
10.1063/1.4998122
]
[
SJR:
0.165
]
53.
[DOI:
10.1063/1.4998100
]
[
SJR:
0.165
]
52.
[DOI:
10.1063/1.4998132
]
[
SJR:
0.165
]
51.
[DOI:
10.1039/C7NR03175K
]
[
IF:
7.233
, SJR:
2.934
]
50.
[DOI:
10.1021/acs.nanolett.7b00392
]
[
IF:
12.080
, SJR:
7.447
]
49.
[DOI:
10.1021/acs.nanolett.7b00183
]
[
IF:
12.080
, SJR:
7.447
]
48.
[DOI:
10.1021/acsphotonics.6b00940
]
[
IF:
6.880
, SJR:
3.376
]
47.
[DOI:
10.1016/j.colsurfb.2017.02.029
]
[
IF:
3.887
, SJR:
1.079
]
46.
[DOI:
10.1021/acsphotonics.6b00727
]
[
IF:
6.880
, SJR:
3.376
]
45.
[DOI:
10.1109/DD.2017.8168025
]
44.
[DOI:
10.1002/adma.201606034
]
[
IF:
21.950
, SJR:
10.579
]
43.
Resonant Silicon Nanoparticles for Enhancement of Light Absorption and Photoluminescence from Hybrid Perovskite Films and Metasurfaces
[DOI:
10.1039/c7nr01631j
]
[
IF:
7.233
, SJR:
2.934
]
2016
42.
[DOI:
10.1109/DD.2016.7756833
]
41.
[DOI:
10.1038/srep37090
]
[
IF:
4.259
, SJR:
1.692
]
40.
[DOI:
10.1109/DD.2016.7756895
]
39.
[DOI:
10.1109/DD.2016.7756826
]
38.
[DOI:
10.1109/metamaterials.2016.7746426
]
37.
[DOI:
10.4236/msa.2016.712064
]
36.
[DOI:
10.1039/C6CS00395H
]
[
IF:
38.618
, SJR:
15.026
]
35.
[DOI:
10.1088/1742-6596/741/1/012112
]
[
SJR:
0.252
]
34.
[DOI:
10.1088/1742-6596/741/1/012119
]
[
SJR:
0.252
]
33.
[DOI:
10.1109/lo.2016.7550034
]
32.
[DOI:
10.1039/C6NR04860A
]
[
IF:
7.367
, SJR:
2.789
]
31.
[DOI:
10.3367/UFNr.2016.02.037703
]
[
IF:
2.301
, SJR:
0.848
]
30.
[DOI:
10.1021/acsphotonics.6b00358
]
[
IF:
6.756
, SJR:
3.471
]
29.
[DOI:
10.1088/1742-6596/741/1/012140
]
[
SJR:
0.252
]
28.
[DOI:
10.1088/1742-6596/741/1/012152
]
[
SJR:
0.252
]
27.
[DOI:
10.1063/1.4954347
]
[
SJR:
0.180
]
26.
[DOI:
10.1039/C6NR01317A
]
[
IF:
7.367
, SJR:
2.789
]
25.
[DOI:
10.1039/C5NR07965A
]
[
IF:
7.367
, SJR:
2.789
]
24.
[DOI:
10.1088/1742-6596/690/1/012021
]
[
SJR:
0.252
]
23.
[DOI:
10.1088/1742-6596/690/1/012020
]
[
SJR:
0.252
]
22.
[DOI:
10.1002/adma.201505346
]
[
IF:
19.791
, SJR:
9.184
]
21.
[DOI:
10.1021/acsnano.5b06074
]
[
IF:
13.942
, SJR:
6.948
]
20.
[DOI:
10.1039/C6DT00390G
]
[
IF:
4.029
, SJR:
1.229
]
2015
19.
[DOI:
10.1039/C5NR06742A
]
[
IF:
7.760
, SJR:
2.770
]
18.
[DOI:
10.1038/srep19410
]
[
IF:
5.228
, SJR:
2.034
]
17.
[DOI:
10.1002/lpor.201500119
]
[
IF:
7.486
, SJR:
4.205
]
16.
[DOI:
10.1002/adfm.201503483
]
[
IF:
11.382
, SJR:
4.859
]
15.
[DOI:
10.1109/DD.2015.7354859
]
14.
[DOI:
10.1021/acs.nanolett.5b02534
]
[
IF:
13.779
, SJR:
8.359
]
2014
13.
[DOI:
10.1134/S1063783414020097
]
[
IF:
0.821
, SJR:
0.465
]
2013
12.
[DOI:
10.1186/1556-276X-8-317
]
[
IF:
2.481
, SJR:
0.805
]
11.
[DOI:
10.1070/QE2013v043n06ABEH015171
]
[
IF:
0.886
, SJR:
0.587
]
10.
[DOI:
10.4028/www.scientific.net/AMR.677.42
]
9.
[DOI:
10.4028/www.scientific.net/AMR.677.36
]
8.
[DOI:
10.1007/s00339-013-7609-3
]
[
IF:
1.694
, SJR:
0.509
]
7.
Dielectric nanoparticles with novel nonlinear optical properties
2012
6.
[DOI:
10.1007/s11051-012-1208-7
]
[
IF:
2.175
, SJR:
0.855
]
2011
5.
4.
[DOI:
10.5772/10539
]
3.
[DOI:
10.1117/1.3666054
]
[
IF:
1.570
, SJR:
0.998
]
2.
The nonlinear optical properties of suspensions of dielectric Al2O3 nanoparticles. Theory and experiment
2010
1.
Nonlinear refractive index of dielectric nanocomposites as a function of intensity and frequency of radiation
Special sections of inorganic chemistry (in English
)
Патенты отсутствуют