Andrey Andreevich Bogdanov
Main position
Main position
Assistant Professor
Cell Phone
+7 921 310 24 12
Email
a.bogdanov@metalab.ifmo.ru
Work Phone
+7 921 310 24 12
Date of Birth
ORCID
ORCID
0000-0002-8215-0445
Researcher ID
Researcher ID
B-1937-2014
Google scholar link
CV
Education
September
2003
-
July
2009
Education institution
Санкт-Петербургский Государственный Политехнический Университет
Professional area
Физика твердого тела, физика полупроводников
Received degree
Магистр
Thesis
Резонаторы для квантовых каскадных лазеров
September
2009
-
August
2012
Education institution
Физико-технический институт им. А.Ф. Иоффе
Professional area
Физика полупроводников
Received degree
кандидат физико-математических наук
Thesis
Электродинамика слоистых полупроводниковых структур для квантовых каскадных лазеров
Work experience
August
2006
-
August
2010
Affiliation
ООО НПК "Электронные и пучковые технологии"
Position
научный сотрудник
Professional area
очистка отходящих газов металлургических производств, неорганическая химия
July
2010
-
August
2018
Affiliation
Санкт-Петербургский национальный исследовательский Академический университет Российской академии наук
Position
Преподаватель
Professional area
Математическая физика
Scholarships and grants
| РНФ 18-72-10140
Research grant
Генерация оптических гармоник в нелинейных субволновых диэлектрических резонаторах
| РФФИ 18-32-20205 (мол_а_вед)
Research grant
Связанные состояния в континууме для эффективной локализации света в диэлектрических структурах субволнового размера
Awards
2018
Award of the physical department of the Russian Academy of Science “Best scientific work of young scientist” for the cycle of papers “Optical forces in nanophotonics and metamaterials”
2018
Best Poster Award for work “All-angle control over directional excitation of surface plasmon polariton with a silicon nanoantenna” at the 3rd International conference Frontiers in Plasmonics and Nano-Photonics, NanoPlams 2018 (Cetraro, Italy)
Teaching experience
January
2007
-
June
2014
Position
Преподаватель
Professional area
Математическая физика
Work address
Санкт-Петербургский Государственный Политехнический Университет
September
2013
-
December
2013
Position
Доцент
Professional area
Квантовая оптика
Papers
Impact Factor
Scientific Journal Ranking
2024
211.
[DOI:
10.1016/j.saa.2024.125283
]
[
IF:
4.478
, SJR:
0.606
]
210.
[DOI:
10.1109/iclo59702.2024.10624391
]
209.
[DOI:
10.1103/physrevapplied.22.024045
]
[
IF:
4.985
, SJR:
1.883
]
208.
[DOI:
10.1109/piers62282.2024.10618064
]
207.
[DOI:
10.1515/nanoph-2024-0396
]
[
IF:
8.449
, SJR:
2.717
]
206.
Electrically‐Driven Light Source Embedded in a GaP Nanowaveguide for Visible‐Range Photonics on Chip
[DOI:
10.1002/adom.202400581
]
[
IF:
9.926
, SJR:
2.890
]
205.
[DOI:
10.1002/lpor.202301399
]
[
IF:
10.947
, SJR:
3.172
]
204.
[DOI:
10.1002/lpor.202300829
]
[
IF:
13.138
, SJR:
3.778
]
203.
[DOI:
10.1016/j.optcom.2024.130648
]
[
IF:
2.310
, SJR:
0.625
]
202.
[DOI:
10.1021/acsphotonics.3c01874
]
[
IF:
7.077
, SJR:
2.273
]
201.
[DOI:
10.1103/physrevapplied.21.024028
]
[
IF:
4.985
, SJR:
1.883
]
200.
[DOI:
10.1021/acsphotonics.3c01166
]
[
IF:
7.077
, SJR:
2.273
]
199.
[DOI:
10.1063/5.0175167
]
[
IF:
6.635
, SJR:
1.662
]
2023
198.
[DOI:
10.3397/in_2023_0718
]
197.
[DOI:
10.1109/dd58728.2023.10325819
]
196.
[DOI:
10.1109/dd58728.2023.10325761
]
195.
[DOI:
10.1109/dd58728.2023.10325780
]
194.
[DOI:
10.1515/nanoph-2023-0373
]
[
IF:
7.923
, SJR:
2.124
]
193.
[DOI:
10.1117/12.3008377
]
192.
[DOI:
10.1016/j.photonics.2023.101172
]
[
IF:
3.164
, SJR:
0.473
]
191.
Merging Nanophotonics with Optical Fibers through 3D Nanoprinting: a novel platform for flexible beam manipulation
2023
190.
[DOI:
10.3390/nano13142091
]
[
IF:
5.076
, SJR:
0.919
]
189.
[DOI:
10.1364/optica.488420
]
[
IF:
11.104
, SJR:
5.074
]
188.
[DOI:
10.3367/UFNe.2021.12.039120
]
[
IF:
2.943
, SJR:
0.660
]
187.
[DOI:
10.1002/adfm.202215007
]
[
IF:
19.924
, SJR:
5.000
]
186.
185.
[DOI:
10.1103/physrevb.107.l041304
]
[
IF:
3.908
, SJR:
1.537
]
184.
[DOI:
10.1039/d2nh00465h
]
[
IF:
11.684
, SJR:
2.486
]
183.
[DOI:
10.1063/5.0127370
]
[
IF:
19.527
, SJR:
4.738
]
2022
182.
[DOI:
10.1002/admt.202200711
]
[
IF:
8.856
, SJR:
1.920
]
181.
[DOI:
10.1109/metamaterials54993.2022.9920836
]
180.
[DOI:
10.1063/5.0111203
]
[
IF:
6.382
, SJR:
1.971
]
179.
[DOI:
10.1016/j.photonics.2022.101084
]
[
IF:
3.008
, SJR:
0.553
]
178.
[DOI:
10.1016/j.photonics.2022.101081
]
[
IF:
3.008
, SJR:
0.553
]
177.
[DOI:
10.23919/splitech55088.2022.9854305
]
176.
Collective states with high quality factors in chains of dielectric resonators
[DOI:
10.18721/JPM.153.341
]
175.
[DOI:
10.1021/acsanm.2c00941
]
[
IF:
6.140
, SJR:
1.178
]
174.
[DOI:
10.1103/physrevb.105.l241301
]
[
IF:
3.908
, SJR:
1.537
, NI:
1
]
173.
[DOI:
10.1364/ol.462021
]
[
IF:
3.560
, SJR:
1.263
]
172.
[DOI:
10.1117/12.2621078
]
171.
[DOI:
10.1117/12.2621039
]
170.
Intelligent metaphotonics empowered by machine learning
[DOI:
10.29026/oea.2022.210147
]
[
IF:
8.933
, SJR:
2.200
]
169.
[DOI:
10.1103/physreva.105.033518
]
[
IF:
2.971
, SJR:
1.183
]
168.
[DOI:
10.1103/physrevlett.128.084301
]
[
IF:
9.185
, SJR:
3.246
, NI:
1
]
2021
167.
166.
[DOI:
10.1088/1742-6596/2103/1/012036
]
[
SJR:
0.210
]
165.
[DOI:
10.1088/1742-6596/2015/1/012083
]
[
SJR:
0.210
]
164.
[DOI:
10.1088/1742-6596/2015/1/012008
]
[
SJR:
0.210
]
163.
[DOI:
10.1088/1742-6596/2015/1/012090
]
[
SJR:
0.210
]
162.
[DOI:
10.1088/1742-6596/2015/1/012020
]
[
SJR:
0.210
]
161.
[DOI:
10.1088/1742-6596/2015/1/012073
]
[
SJR:
0.210
]
160.
[DOI:
10.1088/1742-6596/2015/1/012136
]
[
SJR:
0.210
]
159.
[DOI:
10.1088/1742-6596/2015/1/012172
]
[
SJR:
0.210
]
158.
[DOI:
10.1088/1742-6596/2015/1/012092
]
[
SJR:
0.210
]
157.
[DOI:
10.1063/5.0064480
]
[
IF:
3.971
, SJR:
1.025
, NI:
0,33
]
156.
[DOI:
10.1109/cleo/europe-eqec52157.2021.9592618
]
155.
[DOI:
10.1515/nanoph-2021-0475
]
[
IF:
7.923
, SJR:
2.124
]
154.
[DOI:
10.1515/nanoph-2021-0394
]
[
IF:
7.923
, SJR:
2.124
]
153.
[DOI:
10.3390/nano11112937
]
[
IF:
5.719
, SJR:
0.839
]
152.
[DOI:
10.1021/acs.nanolett.1c03257
]
[
IF:
12.262
, SJR:
3.761
, NI:
0,65
]
151.
[DOI:
10.1103/physrevapplied.16.039901
]
[
IF:
4.931
, SJR:
1.534
]
150.
[DOI:
10.3397/in-2021-2573
]
149.
[DOI:
10.1364/cleo_qels.2021.ftu4f.4
]
148.
[DOI:
10.1364/cleo_qels.2021.fm3i.6
]
147.
[DOI:
10.1364/cleo_si.2021.sm1p.4
]
146.
[DOI:
10.1063/5.0054740
]
[
IF:
3.971
, SJR:
1.025
]
145.
[DOI:
10.1103/physrevb.103.214312
]
[
IF:
3.908
, SJR:
1.537
]
144.
[DOI:
10.1002/lpor.202000430
]
[
IF:
10.947
, SJR:
3.172
]
143.
[DOI:
10.23919/eucap51087.2021.9411439
]
142.
[DOI:
10.1103/physreva.103.043510
]
[
IF:
2.971
, SJR:
1.183
]
141.
140.
Excitation of a bound state in the continuum in nonlinear systems from the far field
[DOI:
10.1117/12.2591938
]
139.
[DOI:
10.1103/physrevapplied.15.034041
]
[
IF:
4.931
, SJR:
1.534
]
138.
[DOI:
10.1103/physrevapplied.15.024052
]
[
IF:
4.931
, SJR:
1.534
]
137.
[DOI:
10.3390/nano11020493
]
[
IF:
5.719
, SJR:
0.839
]
136.
[DOI:
10.1021/acs.nanolett.0c04660
]
[
IF:
12.262
, SJR:
3.761
, NI:
0,21
]
135.
[DOI:
10.1016/j.photonics.2021.100895
]
[
IF:
3.008
, SJR:
0.553
]
2020
134.
[DOI:
10.1021/acs.jpclett.0c03039
]
[
IF:
6.710
, SJR:
2.976
, NI:
0.4
]
133.
[DOI:
10.1063/5.0032229
]
[
SJR:
0.190
]
132.
[DOI:
10.1063/5.0031923
]
[
SJR:
0.190
]
131.
[DOI:
10.1063/5.0031758
]
[
SJR:
0.190
]
130.
[DOI:
10.1063/5.0031922
]
[
SJR:
0.190
]
129.
[DOI:
10.1063/5.0032103
]
[
SJR:
0.190
]
128.
[DOI:
10.1063/5.0032061
]
[
SJR:
0.190
]
127.
[DOI:
10.1063/5.0031956
]
[
SJR:
0.190
]
126.
[DOI:
10.1103/physrevb.102.245406
]
[
IF:
4.036
, SJR:
1.780
]
125.
[DOI:
10.1109/tap.2020.3037663
]
[
IF:
4.388
, SJR:
1.652
]
124.
[DOI:
10.1103/physrevb.102.195129
]
[
IF:
4.036
, SJR:
1.780
]
123.
[DOI:
10.1109/ukrmw49653.2020.9252569
]
122.
[DOI:
10.1002/adma.202003804
]
[
IF:
30.849
, SJR:
10.707
, NI:
0,75
]
121.
120.
[DOI:
10.1021/acsphotonics.0c01078
]
[
IF:
7.529
, SJR:
2.735
]
119.
[DOI:
10.3390/quantum2040034
]
118.
[DOI:
10.1364/cleo_qels.2020.fm2d.1
]
117.
[DOI:
10.1103/physreva.102.033511
]
[
IF:
3.140
, SJR:
1.391
]
116.
[DOI:
10.1103/physrevb.102.075103
]
[
IF:
4.036
, SJR:
1.780
]
115.
[DOI:
10.1103/physrevb.101.165434
]
[
IF:
4.036
, SJR:
1.780
]
114.
[DOI:
10.1088/1742-6596/1461/1/012159
]
[
SJR:
0.227
]
113.
[DOI:
10.1088/1742-6596/1461/1/012133
]
[
SJR:
0.227
]
112.
[DOI:
10.1088/1742-6596/1461/1/012135
]
[
SJR:
0.227
]
111.
[DOI:
10.1088/1742-6596/1461/1/012196
]
[
SJR:
0.227
]
110.
[DOI:
10.1088/1742-6596/1461/1/012178
]
[
SJR:
0.210
]
109.
Analysis of multipolar contributions to eigenmodes in resonators of various shapes
[DOI:
10.1117/12.2555709
]
108.
Observation of highly efficient second-harmonic generation at the nanoscale driven by bound states in the continuum
[DOI:
10.1117/12.2544231
]
107.
[DOI:
10.1021/acsphotonics.9b01515
]
[
IF:
7.529
, SJR:
2.735
]
106.
[DOI:
10.1126/science.aaz3985
]
[
IF:
47.728
, SJR:
12.556
, NI:
0.29
]
105.
[DOI:
10.1016/j.jqsrt.2019.106825
]
[
IF:
3.047
, SJR:
0.888
]
104.
[DOI:
10.1364/opn.31.1.000038
]
[
IF:
2.034
, SJR:
0.742
]
2019
103.
102.
[DOI:
10.1109/metamaterials.2019.8900887
]
101.
Visualization of isofrequency contours of guided modes in all-dielectric hyperbolic-like metasurface
[DOI:
10.1109/metamaterials.2019.8900818
]
100.
[DOI:
10.1103/physrevresearch.1.023016
]
99.
[DOI:
10.1103/PhysRevB.100.115303
]
[
IF:
3.575
, SJR:
1.811
]
98.
[DOI:
10.1039/c9nr02471a
]
[
IF:
6.895
, SJR:
2.180
]
97.
[DOI:
10.1364/cleo_at.2019.jth2a.117
]
96.
[DOI:
10.1103/physreva.99.053804
]
[
IF:
2.777
, SJR:
1.416
]
95.
[DOI:
10.1109/JSTQE.2018.2886306
]
[
IF:
4.917
, SJR:
1.353
]
94.
[DOI:
10.1088/1742-6596/1199/1/012005
]
[
SJR:
0.221
]
93.
[DOI:
10.1515/nanoph-2019-0024
]
[
IF:
7.491
, SJR:
2.618
]
92.
[DOI:
10.1021/acs.jpcc.8b11271
]
[
IF:
4.189
, SJR:
1.477
]
91.
[DOI:
10.1021/acsnano.8b08948
]
[
IF:
14.588
, SJR:
6.131
, NI:
0.54
]
90.
[DOI:
10.1117/1.AP.1.1.016001
]
89.
[DOI:
10.1103/PhysRevB.99.125416
]
[
IF:
3.575
, SJR:
1.811
]
88.
[DOI:
10.1021/acsphotonics.8b01487
]
[
IF:
6.864
, SJR:
2.974
]
87.
[DOI:
10.1016/j.scib.2018.12.003
]
[
IF:
9.511
, SJR:
1.517
]
2018
86.
[DOI:
10.1016/j.apsusc.2018.12.084
]
[
IF:
5.155
, SJR:
1.115
]
85.
Experimental observation of hybrid TE-TM polarized surface waves supported by hyperbolic metasurface
[DOI:
10.1103/PhysRevB.98.195404
]
[
IF:
3.736
, SJR:
1.502
]
84.
[DOI:
10.1021/acsphotonics.8b00900
]
[
IF:
7.143
, SJR:
2.983
]
83.
[DOI:
10.1088/1742-6596/1092/1/012118
]
[
SJR:
0.241
]
82.
[DOI:
10.1088/1742-6596/1092/1/012132
]
[
SJR:
0.241
]
81.
[DOI:
10.1088/1742-6596/1092/1/012012
]
[
SJR:
0.241
]
80.
[DOI:
10.1088/1742-6596/1092/1/012169
]
[
SJR:
0.241
]
79.
[DOI:
10.1103/PhysRevLett.121.193903
]
[
IF:
9.227
, SJR:
3.571
]
78.
[DOI:
10.1088/1742-6596/1092/1/012116
]
[
SJR:
0.241
]
77.
[DOI:
10.1088/1742-6596/1092/1/012140
]
[
SJR:
0.241
]
76.
[DOI:
10.1088/1742-6596/1092/1/012068
]
[
SJR:
0.241
]
75.
[DOI:
10.1088/1742-6596/1092/1/012127
]
[
SJR:
0.241
]
74.
[DOI:
10.1063/1.5046823
]
[
IF:
2.328
, SJR:
0.746
]
73.
[DOI:
10.1021/acsphotonics.8b00775
]
[
IF:
7.143
, SJR:
2.983
]
72.
[DOI:
10.1088/1742-6596/1092/1/012064
]
[
SJR:
0.241
]
71.
[DOI:
10.1088/1742-6596/1092/1/012165
]
[
SJR:
0.241
]
70.
[DOI:
10.1103/PhysRevB.98.161113
]
[
IF:
3.736
, SJR:
1.502
]
69.
[DOI:
10.1364/CLEO_AT.2018.JTh2A.73
]
68.
[DOI:
https://doi.org/10.1038/s41598-018-32479-y
]
[
IF:
4.011
, SJR:
1.414
]
67.
[DOI:
10.1103/PhysRevB.97.224309
]
[
IF:
3.736
, SJR:
1.502
]
66.
[DOI:
10.1134/S1063782618040279
]
[
IF:
0.691
, SJR:
0.308
]
65.
[DOI:
https://doi.org/10.1117/12.2306801
]
[
SJR:
0.234
]
64.
[DOI:
doi.org/10.1002/lpor.201700168
]
[
IF:
9.056
, SJR:
3.821
]
63.
[DOI:
10.1109/piers.2017.8262260
]
62.
[DOI:
10.7868/S0370274X18010034
]
2017
61.
[DOI:
10.1109/DD.2017.8168020
]
60.
The motion of nanoparticles under the non-conservative forces mediated by surface plasmon polaritons
[DOI:
10.1088/1742-6596/917/6/062056
]
[
SJR:
0.240
]
59.
[DOI:
https://doi.org/10.1364/OE.25.032631
]
[
IF:
3.356
, SJR:
1.519
]
58.
[DOI:
10.1063/1.4998058
]
[
SJR:
0.165
]
57.
[DOI:
10.1117/12.2272375
]
[
SJR:
0.240
]
56.
[DOI:
10.1021/acsphotonics.6b00860
]
[
IF:
6.880
, SJR:
3.376
]
55.
[DOI:
10.1134/S1063784217070106
]
[
IF:
0.707
, SJR:
0.390
]
54.
[DOI:
10.1088/1361-648X/aa8bdd
]
[
IF:
2.678
, SJR:
1.553
]
53.
[DOI:
10.1038/lsa.2016.258
]
[
IF:
14.098
, SJR:
5.576
]
52.
[DOI:
10.1063/1.4998049
]
[
SJR:
0.165
]
51.
[DOI:
10.1063/1.4998069
]
[
SJR:
0.165
]
50.
[DOI:
10.1063/1.4998064
]
[
SJR:
0.165
]
49.
[DOI:
10.1063/1.4998034
]
[
SJR:
0.165
]
48.
[DOI:
10.1117/12.2261663
]
[
SJR:
0.240
]
47.
[DOI:
10.1103/PhysRevLett.119.243901
]
[
IF:
8.839
, SJR:
3.622
]
46.
[DOI:
10.1109/PIERS.2017.8261988
]
45.
Лазерная генерация в микродисках с активной областью на основе решеточно-согласованных InP/AlInAs наноструктур
44.
Excitonic lasing of strain-free InP(As) quantum dots in AlInAs microdisk
[DOI:
10.1063/1.4979029
]
[
IF:
3.495
, SJR:
1.382
]
43.
[DOI:
10.1021/acsphotonics.6b00552
]
[
IF:
6.880
, SJR:
3.376
]
42.
[DOI:
10.1021/acsphotonics.7b00924
]
[
IF:
6.880
, SJR:
3.376
]
2016
41.
[DOI:
10.1109/YSF.2016.7753804
]
40.
[DOI:
10.1109/PIERS.2016.7734773
]
39.
[DOI:
10.1109/DD.2016.7756841
]
38.
[DOI:
10.1109/DD.2016.7756892
]
37.
[DOI:
10.1109/DD.2016.7756847
]
36.
[DOI:
10.1109/DD.2016.7756873
]
35.
[DOI:
10.1002/pssr.201600289
]
[
IF:
2.578
, SJR:
1.150
]
34.
[DOI:
10.1103/PhysRevA.94.043815
]
[
IF:
2.925
]
33.
[DOI:
10.1103/PhysRevB.94.115439
]
[
IF:
3.836
]
32.
[DOI:
10.1088/1742-6596/741/1/012122
]
[
SJR:
0.252
]
31.
[DOI:
10.1088/1742-6596/741/1/012158
]
[
SJR:
0.252
]
30.
[DOI:
10.1103/PhysRevB.94.075446
]
[
IF:
3.836
]
29.
[DOI:
10.1002/lpor.201600055
]
[
IF:
8.434
, SJR:
4.013
]
28.
[DOI:
10.1364/CLEO_QELS.2016.FM3D.6
]
[
SJR:
0.102
]
27.
[DOI:
10.1364/CLEO_QELS.2016.FM2B.5
]
[
SJR:
0.102
]
26.
[DOI:
10.1364/CLEO_AT.2016.JW2A.17
]
[
SJR:
0.102
]
25.
[DOI:
10.1364/CLEO_AT.2016.JW2A.32
]
[
SJR:
0.102
]
24.
[DOI:
10.1364/CLEO_QELS.2016.FM4B.6
]
[
SJR:
0.102
]
23.
[DOI:
10.1364/OL.41.000749
]
[
IF:
3.416
, SJR:
1.769
]
22.
[DOI:
10.1002/lpor.201500173
]
[
IF:
8.434
, SJR:
4.013
]
2015
21.
,
pp.
154-156
,
2015
[DOI:
10.1109/MetaMaterials.2015.7342556
]
20.
[DOI:
10.1109/DD.2015.7354869
]
19.
[DOI:
10.1109/DD.2015.7354828
]
18.
[DOI:
10.1109/DD.2015.7354895
]
17.
[DOI:
10.1109/DD.2015.7354851
]
16.
[DOI:
10.1038/srep15846
]
[
IF:
5.228
, SJR:
2.034
]
15.
[DOI:
10.1364/OL.40.004022
]
[
IF:
3.040
, SJR:
2.013
]
14.
[DOI:
10.1103/PhysRevB.92.085305
]
[
IF:
3.718
]
13.
12.
11.
[DOI:
10.1103/PhysRevA.91.063830
]
[
IF:
2.765
]
10.
[DOI:
10.1103/PhysRevB.91.235423
]
[
IF:
3.718
]
2014
9.
[DOI:
10.1186/1556-276X-9-657
]
[
IF:
2.779
, SJR:
0.762
]
8.
[DOI:
10.1134/S1063782614120240
]
[
IF:
0.739
, SJR:
0.482
]
7.
[DOI:
10.1364/OE.22.025782
]
[
IF:
3.488
, SJR:
2.313
]
6.
[DOI:
10.1109/ISLC.2014.224
]
[
SJR:
0.203
]
2012
5.
[DOI:
10.1134/S0021364012130036
]
[
IF:
1.524
, SJR:
1.031
]
4.
[DOI:
10.1134/S1990793112050235
]
[
IF:
0.209
, SJR:
0.195
]
3.
[DOI:
10.1142/S0218216512500691
]
[
IF:
0.403
, SJR:
0.533
]
2.
[DOI:
10.1002/pssb.201100126
]
[
IF:
1.316
, SJR:
0.931
]
2011
1.
[DOI:
10.1103/physrevb.83.125316
]
[
IF:
3.691
]
Курсы отсутствуют.
Патенты отсутствуют