Сергей Владимирович Макаров
Ученая степень
Доктор физико-математических наук
Основная должность
Основная должность
Professor
Должность
- Профессор /квалификационная категория "профессор практики"/
- Head researcher
Адрес офиса
Россия, Ломоносова, 9, "Perolab", "Mercury",
Образование
Сентябрь
2011
-
Декабрь
2014
Учебное заведение
ФИАН
Профессиональная область
экспериментальная нанофотоника
Полученное звание
PhD
Сентябрь
2005
-
Сентябрь
2011
Учебное заведение
МИФИ
Профессиональная область
ФКС
Полученное звание
Специалист
Опыт работы
Май
2013
-
Сентябрь
2013
Место работы
Vienna Technological University
Должность
Visiting Scholar
Стипендии и гранты
2019
Другой грант
President’s of Russian Federation Grant
2015
Стипендия
President’s of Russian Federation Scholarship
Награды и премии
2019
Medal of Russian Academy of Sciences for Young Researchers
2016
Alferov’s Foundation Medal for Young Researchers
2016
Saint-Petersburg Government Award in the field of technology
2019
Премия Президента Российской Федерации в области науки и инноваций для молодых учёных
2021
Research Excellence Award Russia
Опыт преподавания
Сентябрь
2015
-
Должность
Professor
Рабочий адрес
ITMO
Биография
https://ru.m.wikipedia.org/wiki/%D0%9C%D0%B0%D0%BA%D0%B0%D1%80%D0%BE%D0%B2,_%D0%A1%D0%B5%D1%80%D0%B3%D0%B5%D0%B9_%D0%92%D0%BB%D0%B0%D0%B4%D0%B8%D0%BC%D0%B8%D1%80%D0%BE%D0%B2%D0%B8%D1%87
Статьи
Impact Factor
Scientific Journal Ranking
2024
298.
[DOI:
10.1021/acs.nanolett.4c04491
]
[
IF:
11.189
, SJR:
4.853
]
297.
[DOI:
10.1021/acssensors.4c02033
]
[
IF:
8.567
, SJR:
2.055
]
296.
[DOI:
10.1002/aelm.202400396
]
[
IF:
7.068
, SJR:
2.250
]
295.
[DOI:
10.1021/acsami.4c11544
]
[
IF:
9.441
, SJR:
2.535
]
294.
[DOI:
10.1515/nanoph-2024-0396
]
[
IF:
8.449
, SJR:
2.717
]
293.
[DOI:
10.1515/nanoph-2024-0218
]
[
IF:
8.449
, SJR:
2.717
]
292.
[DOI:
10.1515/nanoph-2024-0267
]
[
IF:
8.449
, SJR:
2.717
]
291.
[DOI:
10.1002/adfm.202405457
]
[
IF:
18.808
, SJR:
6.069
]
290.
Electrically‐Driven Light Source Embedded in a GaP Nanowaveguide for Visible‐Range Photonics on Chip
[DOI:
10.1002/adom.202400581
]
[
IF:
9.926
, SJR:
2.890
]
289.
[DOI:
10.1016/j.apsusc.2024.160669
]
[
IF:
6.707
, SJR:
1.295
]
288.
[DOI:
10.1021/acsanm.4c02108
]
[
IF:
5.900
, SJR:
1.193
]
287.
[DOI:
10.1021/acs.jpcc.4c01839
]
[
IF:
4.189
, SJR:
1.477
]
286.
[DOI:
10.1002/adom.202400170
]
[
IF:
9.926
, SJR:
2.890
]
285.
[DOI:
10.1016/j.cej.2024.152771
]
[
IF:
14.660
, SJR:
2.528
]
284.
[DOI:
10.1002/lpor.202300829
]
[
IF:
13.138
, SJR:
3.778
]
283.
[DOI:
10.29026/oea.2024.230148
]
[
IF:
9.636
, SJR:
0.118
]
282.
[DOI:
10.1515/nanoph-2023-0922
]
[
IF:
7.923
, SJR:
2.124
]
281.
[DOI:
10.1021/acs.nanolett.3c04580
]
[
IF:
12.262
, SJR:
3.761
]
280.
[DOI:
10.1016/j.photonics.2024.101239
]
[
IF:
3.164
, SJR:
0.473
]
279.
[DOI:
10.1002/adom.202303049
]
[
IF:
9.926
, SJR:
2.890
]
278.
[DOI:
10.1002/adom.202302782
]
[
IF:
9.926
, SJR:
2.890
]
277.
[DOI:
10.1016/j.photonics.2024.101232
]
[
IF:
3.164
, SJR:
0.473
]
276.
[DOI:
10.1021/acsnano.3c10636
]
[
IF:
15.881
, SJR:
5.554
]
275.
[DOI:
10.1021/acs.jpclett.3c03151
]
[
IF:
6.888
, SJR:
1.850
]
2023
274.
[DOI:
10.1016/j.optlastec.2023.110411
]
[
IF:
3.867
, SJR:
0.874
]
273.
[DOI:
10.1021/acs.jpcc.3c04887
]
[
IF:
4.177
, SJR:
1.028
]
272.
[DOI:
10.1016/j.photonics.2023.101213
]
[
IF:
3.164
, SJR:
0.473
]
271.
[DOI:
10.1021/acsanm.3c03189
]
[
IF:
6.140
, SJR:
1.178
]
270.
[DOI:
10.1038/s41377-023-01262-8
]
[
IF:
17.455
, SJR:
5.497
]
269.
[DOI:
10.1016/j.jallcom.2023.172201
]
268.
[DOI:
10.1364/optica.498746
]
[
IF:
10.644
, SJR:
4.164
]
267.
[DOI:
10.1002/adom.202301123
]
[
IF:
9.926
, SJR:
2.890
]
266.
,
vol.
16
,
2023
[DOI:
10.18721/JPM.163.110
]
265.
[DOI:
10.1016/j.optlastec.2023.109777
]
[
IF:
3.867
, SJR:
0.874
]
264.
[DOI:
10.1002/adom.202300385
]
[
IF:
10.050
, SJR:
2.411
]
263.
All Optically Switchable Active Photonics Based on the Halide Perovskite GST Platform
[DOI:
10.1002/lpor.202200836
]
[
IF:
10.947
, SJR:
3.172
]
262.
[DOI:
10.1002/lpor.202300141
]
[
IF:
10.947
, SJR:
3.172
]
261.
[DOI:
10.3390/nano13091563
]
[
IF:
5.076
, SJR:
0.919
]
260.
[DOI:
10.1016/b978-0-32-398384-6.00017-6
]
259.
[DOI:
10.1016/j.dyepig.2023.111349
]
[
IF:
5.122
, SJR:
0.699
]
258.
[DOI:
10.29026/oea.2023.220154
]
[
IF:
8.933
, SJR:
2.200
]
257.
[DOI:
10.1021/acsmaterialsau.3c00006
]
256.
[DOI:
10.1063/5.0142570
]
[
IF:
3.971
, SJR:
1.025
]
255.
[DOI:
10.1021/acsaem.2c03246
]
[
IF:
6.959
, SJR:
1.588
]
254.
Light-Controlled Multiphase Structuring of Perovskite Crystal Enabled by Thermoplasmonic Metasurface
[DOI:
10.1021/acsnano.3c00373
]
[
IF:
18.027
, SJR:
4.611
]
253.
[DOI:
10.1039/d3nr00214d
]
[
IF:
8.307
, SJR:
1.744
]
252.
[DOI:
10.1021/acsanm.2c05469
]
[
IF:
6.140
, SJR:
1.178
]
251.
[DOI:
10.1021/acs.nanolett.2c04792
]
[
IF:
12.262
, SJR:
3.761
]
250.
[DOI:
10.3390/nano13060965
]
[
IF:
5.076
, SJR:
0.919
]
249.
[DOI:
10.1002/adfm.202215007
]
[
IF:
19.924
, SJR:
5.000
]
248.
[DOI:
10.1039/d3dt00080j
]
[
IF:
4.390
, SJR:
0.980
]
247.
[DOI:
10.1021/acsnano.2c09883
]
[
IF:
18.027
, SJR:
4.611
]
246.
[DOI:
10.1021/acsphotonics.2c01773
]
[
IF:
7.077
, SJR:
2.273
]
245.
[DOI:
10.3390/pharmaceutics15020534
]
[
IF:
6.525
, SJR:
0.922
]
244.
[DOI:
10.1002/adom.202202407
]
243.
[DOI:
10.3390/ma16030959
]
[
IF:
3.748
, SJR:
0.563
]
242.
[DOI:
10.3103/s1062873822700642
]
[
SJR:
0.226
]
241.
[DOI:
10.3103/s1062873822700538
]
240.
[DOI:
10.3103/s1062873822700320
]
[
SJR:
0.226
]
239.
[DOI:
10.1021/acsnano.2c11013
]
[
IF:
18.027
, SJR:
4.611
]
2022
238.
[DOI:
10.1016/j.photonics.2022.101103
]
[
IF:
3.008
, SJR:
0.553
]
237.
,
vol.
15
,
pp.
306-310
,
2022
[DOI:
10.18721/JPM.153.360
]
236.
[DOI:
10.1063/5.0106895
]
[
IF:
3.971
, SJR:
1.025
]
235.
[DOI:
10.1016/j.omx.2022.100214
]
234.
[DOI:
10.3390/nano12213916
]
[
IF:
5.719
, SJR:
0.839
]
233.
[DOI:
10.1021/acs.nanolett.2c03524
]
[
IF:
12.262
, SJR:
3.761
]
232.
[DOI:
10.3390/ijms232113375
]
[
IF:
5.923
, SJR:
1.455
]
231.
[DOI:
10.1002/lpor.202200295
]
[
IF:
10.947
, SJR:
3.172
]
230.
[DOI:
10.1109/wpw54272.2022.9901329
]
229.
[DOI:
10.1002/ente.202200485
]
[
IF:
4.149
, SJR:
0.825
]
228.
[DOI:
10.1021/acsanm.2c00941
]
[
IF:
6.140
, SJR:
1.178
]
227.
[DOI:
10.1016/j.apmt.2022.101545
]
[
IF:
8.663
, SJR:
1.619
]
226.
[DOI:
10.3390/nano12101756
]
[
IF:
5.719
, SJR:
0.839
]
225.
[DOI:
10.1002/adpr.202100326
]
224.
[DOI:
10.1515/nanoph-2022-0074
]
[
IF:
7.923
, SJR:
2.124
]
223.
[DOI:
10.1021/acs.chemrev.1c01029
]
[
IF:
72.087
, SJR:
18.718
]
222.
[DOI:
10.1021/acsphotonics.2c00036
]
[
IF:
7.077
, SJR:
2.273
]
221.
[DOI:
10.1021/acsabm.2c00295
]
[
SJR:
0.746
]
220.
[DOI:
10.1063/5.0088217
]
[
IF:
3.791
, SJR:
1.182
]
219.
[DOI:
10.1002/lpor.202100728
]
[
IF:
10.947
, SJR:
3.172
]
218.
[DOI:
10.1002/adfm.202109834
]
[
IF:
19.924
, SJR:
5.000
]
217.
[DOI:
10.1088/1742-6596/2172/1/012004
]
[
SJR:
0.210
]
216.
[DOI:
10.1021/acsphotonics.1c01511
]
[
IF:
7.077
, SJR:
2.273
]
215.
[DOI:
10.1021/acsphotonics.1c01347
]
[
IF:
7.077
, SJR:
2.273
]
2021
214.
[DOI:
10.1016/j.apmt.2021.101289
]
[
IF:
8.663
, SJR:
1.619
]
213.
[DOI:
10.1002/lpor.202100253
]
[
IF:
10.947
, SJR:
3.172
]
212.
[DOI:
10.1088/1742-6596/2086/1/012131
]
[
SJR:
0.210
]
211.
[DOI:
10.1021/acs.nanolett.1c03656
]
[
IF:
12.262
, SJR:
3.761
, NI:
0,43
]
210.
[DOI:
10.1088/1742-6596/2015/1/012104
]
[
IF:
0.550
, SJR:
0.210
]
209.
[DOI:
10.1088/1742-6596/2015/1/012115
]
[
SJR:
0.210
]
208.
[DOI:
10.1088/1742-6596/2015/1/012112
]
[
SJR:
0.210
]
207.
[DOI:
10.1088/1742-6596/2015/1/012010
]
[
IF:
0.550
, SJR:
0.210
]
206.
[DOI:
10.1088/1742-6596/2015/1/012077
]
[
SJR:
0.210
]
205.
[DOI:
10.1088/1742-6596/2015/1/012129
]
[
IF:
0.550
, SJR:
0.210
]
204.
[DOI:
10.1088/1742-6596/2015/1/012087
]
[
SJR:
0.210
]
203.
[DOI:
10.1088/1742-6596/2015/1/012019
]
[
IF:
0.550
, SJR:
0.210
]
202.
[DOI:
10.1109/cleo/europe-eqec52157.2021.9542035
]
201.
[DOI:
10.1021/acs.jpclett.1c02611
]
[
IF:
6.710
, SJR:
2.976
]
200.
Opto-thermally controlled beam steering in nonlinear all-dielectric metastructures
[DOI:
10.1364/oe.440564
]
[
IF:
3.833
, SJR:
1.233
]
199.
[DOI:
10.1021/acs.jpclett.1c01968
]
[
IF:
6.475
, SJR:
2.563
, NI:
0,77
]
198.
[DOI:
10.1016/j.nanoen.2021.106484
]
[
IF:
19.069
, SJR:
4.684
]
197.
[DOI:
10.1021/acs.nanolett.1c02074
]
[
IF:
12.262
, SJR:
3.761
, NI:
0,25
]
196.
[DOI:
10.1364/aop.426047
]
[
IF:
24.750
, SJR:
7.473
]
195.
[DOI:
10.1021/acs.nanolett.1c01857
]
[
IF:
12.262
, SJR:
3.761
, NI:
0,28
]
194.
[DOI:
10.1002/lpor.202100094
]
[
IF:
10.947
, SJR:
3.172
]
193.
[DOI:
10.1364/prj.422640
]
[
IF:
7.254
, SJR:
1.984
]
192.
[DOI:
10.1063/5.0048969
]
[
IF:
3.971
, SJR:
1.025
, NI:
0,53
]
191.
[DOI:
10.1021/acs.jpcc.1c01492
]
[
IF:
4.126
, SJR:
1.477
]
190.
[DOI:
10.1021/acs.chemmater.0c04263
]
[
IF:
10.508
, SJR:
2.930
]
189.
[DOI:
10.1117/12.2592977
]
188.
[DOI:
10.1063/5.0042557
]
[
IF:
3.971
, SJR:
1.025
, NI:
0,75
]
187.
[DOI:
10.1002/adpr.202000139
]
186.
[DOI:
10.3390/nano11020412
]
[
IF:
5.719
, SJR:
0.839
]
185.
[DOI:
10.1021/acsami.0c20463
]
[
IF:
9.229
, SJR:
2.535
]
184.
[DOI:
10.3390/nano11020313
]
[
IF:
5.719
, SJR:
0.839
]
2020
183.
[DOI:
10.3390/nano11010045
]
[
IF:
5.076
, SJR:
0.919
]
182.
[DOI:
10.1002/adom.202001715
]
[
IF:
9.926
, SJR:
2.890
]
181.
[DOI:
10.1063/5.0031747
]
[
SJR:
0.190
]
180.
[DOI:
10.1063/5.0032230
]
[
SJR:
0.190
]
179.
[DOI:
10.1063/5.0031779
]
[
SJR:
0.190
]
178.
[DOI:
10.1063/5.0031984
]
[
SJR:
0.190
]
177.
[DOI:
10.1063/5.0031811
]
[
SJR:
0.190
]
176.
[DOI:
10.1063/5.0031764
]
[
SJR:
0.190
]
175.
[DOI:
10.4028/www.scientific.net/ssp.312.185
]
[
SJR:
0.198
]
174.
[DOI:
10.4028/www.scientific.net/ssp.312.179
]
[
SJR:
0.198
]
173.
[DOI:
10.1002/lpor.202000338
]
[
IF:
13.138
, SJR:
3.778
]
172.
[DOI:
10.1039/d0tc02654a
]
[
IF:
7.393
, SJR:
1.899
]
171.
[DOI:
10.1021/acsnano.0c05710
]
[
IF:
15.881
, SJR:
5.554
, NI:
0.13
]
170.
169.
[DOI:
10.3390/nano10101937
]
[
IF:
5.076
, SJR:
0.919
]
168.
[DOI:
10.1364/cleo_qels.2020.fth1c.5
]
167.
Broadband transparency of perovskite metasurfaces driven by Kerker effect
[DOI:
10.1117/12.2568566
]
166.
[DOI:
10.1021/acsnano.0c04872
]
[
IF:
15.881
, SJR:
5.554
, NI:
0.38
]
165.
[DOI:
10.1063/5.0016173
]
[
IF:
3.791
, SJR:
1.182
, NI:
0.5
]
164.
[DOI:
10.3390/nano10071306
]
[
IF:
5.076
, SJR:
0.919
]
163.
[DOI:
10.1515/nanoph-2020-0207
]
[
IF:
8.449
, SJR:
2.717
]
162.
[DOI:
10.1021/acs.nanolett.0c01646
]
[
IF:
11.189
, SJR:
4.853
, NI:
0.81
]
161.
[DOI:
10.1021/acsnano.0c01104
]
[
IF:
15.881
, SJR:
5.554
, NI:
0.56
]
160.
[DOI:
10.1021/acsnano.0c01468
]
[
IF:
15.881
, SJR:
5.554
, NI:
0.53
]
159.
[DOI:
10.1088/1742-6596/1461/1/012071
]
[
SJR:
0.227
]
158.
[DOI:
10.1088/1742-6596/1461/1/012013
]
[
SJR:
0.227
]
157.
[DOI:
10.1088/1742-6596/1461/1/012091
]
[
SJR:
0.227
]
156.
[DOI:
10.1088/1742-6596/1461/1/012081
]
[
SJR:
0.227
]
155.
[DOI:
10.1088/1742-6596/1461/1/012086
]
[
SJR:
0.227
]
154.
[DOI:
10.1088/1742-6596/1461/1/012179
]
[
SJR:
0.227
]
153.
[DOI:
10.1088/1742-6596/1461/1/012178
]
[
SJR:
0.210
]
152.
[DOI:
10.1002/smll.202000410
]
[
IF:
13.281
, SJR:
3.785
]
151.
[DOI:
10.1021/acs.jpclett.0c00745
]
[
IF:
6.710
, SJR:
2.976
, NI:
0.58
]
150.
[DOI:
10.1002/lpor.201900082
]
[
IF:
13.138
, SJR:
3.778
]
149.
[DOI:
10.1515/nanoph-2019-0443
]
[
IF:
8.449
, SJR:
2.717
]
148.
[DOI:
10.1103/physrevapplied.13.014021
]
[
IF:
4.985
, SJR:
1.883
]
2019
147.
[DOI:
10.1515/nanoph-2019-0377
]
[
IF:
7.491
, SJR:
2.618
]
146.
[DOI:
10.1016/j.jlumin.2019.116985
]
[
IF:
3.280
, SJR:
0.626
]
145.
[DOI:
10.1088/1742-6596/1410/1/012087
]
[
SJR:
0.221
]
144.
[DOI:
10.1088/1742-6596/1410/1/012077
]
[
SJR:
0.221
]
143.
[DOI:
10.1039/c9nr08952g
]
[
IF:
6.895
, SJR:
2.180
]
142.
[DOI:
10.1364/ome.10.000029
]
[
IF:
3.064
, SJR:
0.948
]
141.
[DOI:
10.7567/1882-0786/ab4b1b
]
[
IF:
3.086
, SJR:
0.959
]
140.
[DOI:
10.1063/1.5107449
]
[
IF:
17.054
, SJR:
3.983
]
139.
[DOI:
10.1002/ente.201900877
]
[
IF:
3.404
, SJR:
0.846
]
138.
[DOI:
10.1039/c9nr03793d
]
[
IF:
6.895
, SJR:
2.180
]
137.
[DOI:
10.1039/c9cp03656c
]
[
IF:
3.430
, SJR:
1.143
]
136.
[DOI:
10.1134/s0021364019130010
]
[
IF:
1.399
, SJR:
0.583
]
135.
[DOI:
10.1134/s1063784219030022
]
[
IF:
0.603
, SJR:
0.376
]
134.
Si1−xGex nanoantennas with a tailored Raman response and light-to-heat conversion for advanced sensing applications
[DOI:
10.1039/c9nr01837a
]
[
IF:
6.895
, SJR:
2.180
]
133.
Beyond Quantum Confinement: Excitonic Nonlocality in Halide Perovskite Nanoparticles with Mie Resonances
[DOI:
10.1039/C8NR09837A
]
[
IF:
6.895
, SJR:
2.180
]
132.
[DOI:
10.1021/acsnano.8b08948
]
[
IF:
14.588
, SJR:
6.131
, NI:
0.54
]
131.
[DOI:
10.1016/j.apsusc.2019.01.031
]
[
IF:
6.182
, SJR:
1.230
]
130.
[DOI:
10.1002/lpor.201800274
]
[
IF:
10.655
, SJR:
4.014
]
2018
129.
[DOI:
10.1088/1742-6596/1124/4/041022
]
[
SJR:
0.241
]
128.
[DOI:
10.1021/acsami.8b17396
]
[
IF:
8.097
, SJR:
2.784
]
127.
[DOI:
10.1016/j.apsusc.2018.12.084
]
[
IF:
5.155
, SJR:
1.115
]
126.
Dewetting Mechanisms and Their Exploitation for the Large-scale Fabrication of Advanced Nanophotonic Systems
125.
[DOI:
10.1088/1742-6596/1092/1/012082
]
[
SJR:
0.241
]
124.
[DOI:
10.1088/1742-6596/1092/1/012038
]
[
SJR:
0.241
]
123.
[DOI:
10.1088/1742-6596/1092/1/012009
]
[
SJR:
0.241
]
122.
[DOI:
10.1088/1742-6596/1092/1/012179
]
[
SJR:
0.241
]
121.
[DOI:
10.1088/1742-6596/1092/1/012171
]
[
SJR:
0.241
]
120.
[DOI:
10.1088/1742-6596/1092/1/012122
]
[
SJR:
0.241
]
119.
[DOI:
10.1021/acs.nanolett.8b01912
]
[
IF:
12.279
, SJR:
6.211
]
118.
[DOI:
10.1002/adom.201800576
]
[
IF:
7.125
, SJR:
2.711
]
117.
[DOI:
10.1002/adom.201800784
]
[
IF:
7.125
, SJR:
2.711
]
116.
Resonant Silicon Nanoparticles with Controllable Crystalline State and Nonlinear Optical Response
[DOI:
10.1039/C8NR02057D
]
[
IF:
6.970
, SJR:
2.396
]
115.
[DOI:
10.7868/S0370274X18110085
]
114.
Фотоиндуцированная миграция ионов в оптически резонансных перовскитных наночастицах
113.
[DOI:
doi.org/10.1002/lpor.201700168
]
[
IF:
9.056
, SJR:
3.821
]
112.
[DOI:
10.1039/C7NR07953B
]
[
IF:
6.970
, SJR:
2.396
]
111.
[DOI:
10.1038/s41598-018-24492-y
]
[
IF:
4.011
, SJR:
1.414
]
110.
[DOI:
10.1021/acs.nanolett.7b04727
]
[
IF:
12.279
, SJR:
6.211
]
109.
[DOI:
10.1109/piers.2017.8261981
]
108.
[DOI:
10.1109/piers.2017.8261982
]
107.
[DOI:
10.1109/piers.2017.8262339
]
106.
[DOI:
10.1109/piers.2017.8261891
]
105.
[DOI:
10.1002/adom.201701153
]
[
IF:
7.125
, SJR:
2.711
]
104.
[DOI:
10.1109/comcas.2017.8244856
]
103.
[DOI:
10.1109/comcas.2017.8244858
]
2017
102.
[DOI:
10.1021/acsami.7b16339
]
[
IF:
7.504
, SJR:
2.561
]
101.
[DOI:
10.1021/acs.nanolett.7b04542
]
[
IF:
12.080
, SJR:
7.447
]
100.
[DOI:
10.1109/dd.2017.8168050
]
99.
[DOI:
10.1088/1742-6596/917/6/062017
]
[
SJR:
0.240
]
98.
[DOI:
10.1063/1.4998103
]
[
SJR:
0.165
]
97.
,
pp.
403-405
,
2017
[DOI:
10.1109/MetaMaterials.2017.8107828
]
96.
[DOI:
10.1088/1742-6596/929/1/012053
]
[
SJR:
0.240
]
95.
[DOI:
10.1063/1.5007277
]
[
IF:
3.495
, SJR:
1.382
]
94.
[DOI:
10.1088/1742-6596/917/6/062002
]
[
SJR:
0.240
]
93.
[DOI:
10.1002/lpor.201700227
]
[
IF:
8.529
, SJR:
4.228
]
92.
[DOI:
10.1063/1.4998100
]
[
SJR:
0.165
]
91.
[DOI:
10.1063/1.4998122
]
[
SJR:
0.165
]
90.
[DOI:
10.1063/1.4998054
]
[
SJR:
0.165
]
89.
[DOI:
10.1063/1.4998104
]
[
SJR:
0.165
]
88.
[DOI:
10.1063/1.4998131
]
[
SJR:
0.165
]
87.
[DOI:
10.1063/1.4998051
]
[
SJR:
0.165
]
86.
[DOI:
10.1063/1.4998078
]
[
SJR:
0.165
]
85.
[DOI:
10.1063/1.4998035
]
[
SJR:
0.165
]
84.
[DOI:
10.1063/1.4998072
]
[
SJR:
0.165
]
83.
[DOI:
10.1063/1.4998058
]
[
SJR:
0.165
]
82.
[DOI:
10.1063/1.4998132
]
[
SJR:
0.165
]
81.
[DOI:
10.1007/s00340-017-6826-4
]
[
IF:
1.696
, SJR:
0.752
]
80.
Atomistic simulation of Si-Au melt crystallization with novel interatomic potential
[DOI:
10.1016/j.commatsci.2017.09.054
]
[
IF:
2.530
, SJR:
1.766
]
79.
[DOI:
10.1063/1.4998064
]
[
SJR:
0.165
]
78.
[DOI:
10.1016/j.apsusc.2017.07.263
]
[
IF:
4.439
, SJR:
1.093
]
77.
[DOI:
10.1002/lpor.201700108
]
[
IF:
8.529
, SJR:
4.228
]
76.
[DOI:
10.1364/OME.7.002793
]
[
IF:
2.566
, SJR:
0.952
]
75.
[DOI:
10.1021/acs.nanolett.7b00183
]
[
IF:
12.080
, SJR:
7.447
]
74.
[DOI:
10.1021/acs.nanolett.7b00392
]
[
IF:
12.080
, SJR:
7.447
]
73.
[DOI:
10.1021/acsphotonics.6b00940
]
[
IF:
6.880
, SJR:
3.376
]
72.
[DOI:
10.1016/j.photonics.2017.02.003
]
[
IF:
1.705
, SJR:
0.535
]
71.
[DOI:
10.1002/adma.201606034
]
[
IF:
21.950
, SJR:
10.579
]
70.
Resonant Silicon Nanoparticles for Enhancement of Light Absorption and Photoluminescence from Hybrid Perovskite Films and Metasurfaces
[DOI:
10.1039/c7nr01631j
]
[
IF:
7.233
, SJR:
2.934
]
2016
69.
Nonlinear all-dielectric nanoantenna reconfigured by electron-hole plasma
68.
[DOI:
10.1109/DD.2016.7756826
]
67.
[DOI:
10.1109/DD.2016.7756895
]
66.
[DOI:
10.1109/DD.2016.7756833
]
65.
[DOI:
10.1109/DD.2016.7756894
]
64.
[DOI:
10.1109/metamaterials.2016.7746426
]
63.
[DOI:
10.1109/APS.2016.7695718
]
62.
[DOI:
10.1002/lpor.201600164
]
[
IF:
8.434
, SJR:
4.013
]
61.
[DOI:
10.4236/msa.2016.712064
]
60.
[DOI:
10.1088/1742-6596/741/1/012112
]
[
SJR:
0.252
]
59.
[DOI:
10.1088/1742-6596/741/1/012119
]
[
SJR:
0.252
]
58.
[DOI:
10.1109/lo.2016.7550034
]
57.
[DOI:
10.1039/C6NR04860A
]
[
IF:
7.367
, SJR:
2.789
]
56.
[DOI:
10.1016/j.surfcoat.2016.08.047
]
[
IF:
2.139
, SJR:
0.852
]
55.
[DOI:
10.1021/acsphotonics.6b00358
]
[
IF:
6.756
, SJR:
3.471
]
54.
[DOI:
10.1088/1742-6596/741/1/012140
]
[
SJR:
0.252
]
53.
[DOI:
10.1088/1742-6596/741/1/012152
]
[
SJR:
0.252
]
52.
[DOI:
10.1063/1.4954347
]
[
SJR:
0.180
]
51.
[DOI:
10.1063/1.4952740
]
[
IF:
3.411
, SJR:
1.673
]
50.
[DOI:
10.1039/C6NR01317A
]
[
IF:
7.367
, SJR:
2.789
]
49.
[DOI:
10.1039/C5NR07965A
]
[
IF:
7.367
, SJR:
2.789
]
48.
[DOI:
10.1088/1742-6596/690/1/012020
]
[
SJR:
0.252
]
47.
[DOI:
10.1088/1742-6596/690/1/012021
]
[
SJR:
0.252
]
46.
[DOI:
10.1002/adma.201505346
]
[
IF:
19.791
, SJR:
9.184
]
2015
45.
[DOI:
10.1039/C5NR06742A
]
[
IF:
7.760
, SJR:
2.770
]
44.
[DOI:
10.1038/srep19410
]
[
IF:
5.228
, SJR:
2.034
]
43.
[DOI:
10.1002/lpor.201500119
]
[
IF:
7.486
, SJR:
4.205
]
42.
[DOI:
10.1109/DD.2015.7354859
]
41.
[DOI:
10.1364/OL.40.004967
]
[
IF:
3.040
, SJR:
2.013
]
40.
[DOI:
10.1134/S0030400X15100240
]
[
IF:
0.644
, SJR:
0.273
]
39.
[DOI:
10.1021/acs.nanolett.5b02534
]
[
IF:
13.779
, SJR:
8.359
]
38.
[DOI:
10.1134/S0021364015060132
]
[
IF:
1.172
, SJR:
0.623
]
37.
[DOI:
10.1117/12.2176880
]
[
SJR:
0.248
]
36.
[DOI:
10.1364/OL.40.001687
]
[
IF:
3.040
, SJR:
2.013
]
35.
[DOI:
10.1088/1612-2011/12/4/046005
]
[
IF:
2.391
, SJR:
1.250
]
34.
[DOI:
10.1364/OE.23.005915
]
[
IF:
3.148
, SJR:
1.910
]
33.
[DOI:
10.1016/j.apsusc.2015.02.098
]
[
IF:
3.150
, SJR:
0.890
]
32.
[DOI:
10.1088/1612-2011/12/2/025902
]
[
IF:
2.391
, SJR:
1.250
]
2014
31.
[DOI:
10.1134/S0021364014170135
]
[
IF:
1.359
, SJR:
0.762
]
30.
Electron dynamics and prompt ablation of aluminum surface excited by intense femtosecond laser pulse
[DOI:
10.1007/s00339-014-8826-0
]
[
IF:
1.694
, SJR:
0.509
]
29.
[DOI:
10.1088/1612-2011/11/12/125602
]
[
IF:
2.458
, SJR:
1.483
]
28.
[DOI:
10.1070/QE2014v044n09ABEH015466
]
[
IF:
0.897
, SJR:
0.551
]
27.
[DOI:
10.1134/S0021364014130062
]
[
IF:
1.359
, SJR:
0.762
]
26.
[DOI:
10.1103/PhysRevE.90.023017
]
[
IF:
2.288
, SJR:
1.244
]
25.
[DOI:
10.1088/1612-2011/11/10/106101
]
[
IF:
2.458
, SJR:
1.483
]
24.
[DOI:
10.1134/S0021364014090057
]
[
IF:
1.359
, SJR:
0.762
]
23.
[DOI:
10.1070/QE2014v044n06ABEH015426
]
[
IF:
0.897
, SJR:
0.551
]
22.
[DOI:
10.1088/1612-2011/11/6/065301
]
[
IF:
2.458
, SJR:
1.483
]
21.
[DOI:
10.1134/S0021364014010020
]
[
IF:
1.359
, SJR:
0.762
]
20.
[DOI:
10.1016/j.apsusc.2013.12.032
]
[
IF:
2.711
, SJR:
0.948
]
2013
19.
[DOI:
10.1007/s00339-013-8196-z
]
[
IF:
1.694
, SJR:
0.509
]
18.
[DOI:
10.1016/j.apsusc.2013.07.144
]
[
IF:
2.538
, SJR:
0.960
]
17.
[DOI:
10.1016/j.optcom.2013.06.051
]
[
IF:
1.542
, SJR:
0.740
]
16.
[DOI:
10.1134/S0021364013100056
]
[
IF:
1.364
, SJR:
0.795
]
15.
Local field enhancement on metallic periodic surface structures produced by femtosecond laser pulses
[DOI:
10.1070/QE2013v043n04ABEH015105
]
[
IF:
0.886
, SJR:
0.587
]
14.
[DOI:
10.1364/OL.38.001452
]
[
IF:
3.179
, SJR:
2.441
]
13.
[DOI:
10.1088/1612-2011/10/5/056004
]
[
IF:
2.964
, SJR:
1.418
]
12.
[DOI:
10.1088/1612-2011/10/4/045605
]
[
IF:
2.964
, SJR:
1.418
]
11.
[DOI:
10.1007/s00340-013-5350-4
]
[
IF:
1.782
, SJR:
1.198
]
10.
[DOI:
10.1016/j.sab.2013.07.010
]
[
IF:
3.150
, SJR:
1.108
]
2012
9.
[DOI:
10.1134/S002136401218004X
]
[
IF:
1.524
, SJR:
1.031
]
8.
[DOI:
10.1007/s00339-012-6849-y
]
[
IF:
1.694
, SJR:
0.509
]
2011
7.
[DOI:
10.3103/S1068335611110030
]
6.
[DOI:
10.1070/QE2011v041n09ABEH014530
]
[
IF:
0.832
, SJR:
0.489
]
5.
[DOI:
10.1134/S002136401113008X
]
[
IF:
1.352
, SJR:
0.771
]
4.
[DOI:
10.1134/S199507801102008X
]
3.
[DOI:
10.1103/PhysRevB.83.115426
]
[
IF:
3.691
]
2.
[DOI:
10.1007/s00339-011-6323-2
]
[
IF:
1.694
, SJR:
0.509
]
1.
[DOI:
10.1134/S0021364011160065
]
[
IF:
1.352
, SJR:
0.771
]
Экспериментальные методы нанофотоники II (in English
)
Название патента | Авторы | Тип | Год |
---|---|---|---|
Способ изготовления высококристаллических неорганических перовскитных тонких пленок CsPbBr3 | Анатолий Пушкарев, Сергей Аношкин, Сергей Макаров, Дмитрий Татаринов | Изобретение | 2023 |
Способ получения сенсора хлороводорода в воздухе | Анатолий Пушкарев, Дарья Маркина, Сергей Аношкин, Елизавета Сапожникова , Сергей Макаров | Изобретение | 2023 |
Способ получения сверхрешеток из нанокристаллов свинцово-галогенидного перовскита | Сергей Макаров, Михаил Баранов, Анатолий Пушкарев, Александр Марунченко | Изобретение | 2022 |
Синий светодиод на основе галогенидных перовскит-полимерных материалов и способ его изготовления | Сергей Макаров, Анатолий Пушкарев, Сергей Аношкин | Изобретение | 2022 |
Необратимый термоиндикатор критической температуры | Анна Образцова, Эдуард Даниловский, Лев Зеленков, Сергей Макаров, Анвар Захидов | Полезная модель | 2022 |
Модуль умного окна | Эдуард Даниловский, Лев Зеленков, Анатолий Пушкарев, Дмитрий Гец, Сергей Аношкин, Сергей Макаров, Анвар Захидов | Полезная модель | 2021 |
Полупроводниковое устройство на основе запассивированного органо-неорганического перовскита | Григорий Верхоглядов, Дмитрий Гец, Анвар Захидов, Сергей Макаров | Полезная модель | 2021 |
Перестраиваемый светодиод на основе перовскита с модификацией интерфейса | Екатерина Тигунцева, Сергей Макаров, Анвар Захидов, Дмитрий Гец, Эдуард Даниловский, Григорий Верхоглядов | Полезная модель | 2020 |
Способ изготовления неорганических хлорсодержащих перовскитных тонких пленок | Татьяна Ляшенко, Сергей Аношкин, Сергей Макаров, Анатолий Пушкарев | Изобретение | 2020 |
Способ получения электролюминесцирующих смешанных свинцово-галоидных перовскитных материалов с высокой фазовой стабильностью | Анатолий Пушкарев, Татьяна Ляшенко, Сергей Аношкин, Сергей Макаров | Изобретение | 2020 |
Светоизлучающий солнечный элемент | Сергей Макаров, Анвар Захидов, Дмитрий Гец, Эдуард Даниловский | Полезная модель | 2019 |
Cпособ изготовления неорганических перовскитных нановискеров типа CsPbBr3 | Сергей Макаров, Анатолий Пушкарев, Вячеслав Королёв, Дарья Маркина | Изобретение | 2019 |
Активная диэлектрическая наноантенна | Эдуард Агеев, Роман Савельев, Артем Ларин, Сергей Макаров, Дмитрий Зуев, Анастасия Залогина | Полезная модель | 2019 |
Источник генерации второй гармоники | Максим Тарасов, Михаил Петров, Сергей Макаров | Полезная модель | 2018 |
Нелинейная диэлектрическая наноантенна | Валентин Миличко, Сергей Макаров, Георгий Зограф, Дмитрий Зуев | Полезная модель | 2018 |
Активный оптический элемент на основе перовскита с резонансными наночастицами | Александр Чебыкин, Екатерина Тигунцева, Сергей Макаров, Анвар Захидов | Полезная модель | 2018 |
Зонд для сканирующей зондовой микроскопии и способ его изготовления (варианты) | Филипп Комиссаренко, Иван Мухин, Антон Самусев, Иван Синев, Сергей Макаров | Изобретение | 2018 |