Анатолий Петрович Пушкарев
Ученая степень
Кандидат химических наук
Основная должность
Основная должность
Assistant Professor
Должность
- Senior Research Scientist
Мобильный телефон
+7 9310028066
Email
anatoly.pushkarev@metalab.ifmo.ru
Дата рождения
Адрес офиса
Россия, Ломоносова, 9, "Perolab",
Образование
Сентябрь
2006
-
Июль
2011
Учебное заведение
ННГУ им. Н.И. Лобачевского
Тезис
Органические светоизлучающие диоды на основе комплексов Nd3+, Er3+ и Yb3+ с гетероциклическими лигандами
Статьи
Impact Factor
Scientific Journal Ranking
2024
94.
[DOI:
10.1021/acsenergylett.4c02404
]
[
IF:
23.101
, SJR:
8.632
]
93.
[DOI:
10.1016/j.matt.2024.08.007
]
[
IF:
11.385
]
92.
[DOI:
10.1039/d4cc04488f
]
[
IF:
6.222
, SJR:
1.837
]
91.
[DOI:
10.1039/d4cc04488f
]
[
IF:
6.222
, SJR:
1.837
]
90.
[DOI:
10.1002/advs.202405709
]
[
IF:
16.806
, SJR:
5.388
]
89.
Charge Trapping and Defect Dynamics as Origin of Memory Effects in Metal Halide Perovskite Memlumors
[DOI:
10.1021/acs.jpclett.4c00985
]
[
IF:
6.888
, SJR:
1.850
]
88.
[DOI:
10.29026/oea.2024.230148
]
[
IF:
9.636
, SJR:
0.118
]
87.
[DOI:
10.1021/acsenergylett.4c00691
]
[
IF:
22.000
, SJR:
7.855
]
86.
[DOI:
10.1021/acsami.3c18122
]
[
IF:
10.383
, SJR:
2.143
]
85.
[DOI:
10.1021/acs.jpcc.4c00155
]
[
IF:
4.177
, SJR:
1.028
]
84.
[DOI:
10.1016/j.photonics.2024.101232
]
[
IF:
3.164
, SJR:
0.473
]
83.
[DOI:
10.1021/acs.jpclett.3c03151
]
[
IF:
6.888
, SJR:
1.850
]
2023
82.
[DOI:
10.1016/j.commatsci.2023.112672
]
[
IF:
3.300
, SJR:
0.877
]
81.
Identifying a laser ablation damage threshold for all-inorganic mixed-halide perovskite microwires
[DOI:
10.1117/12.3009477
]
80.
On the persistence of photoluminescence in all-inorganic mixed-halide nanowire lasers
[DOI:
10.1117/12.3009481
]
79.
[DOI:
10.1364/optica.498746
]
[
IF:
10.644
, SJR:
4.164
]
78.
,
vol.
16
,
2023
[DOI:
10.18721/JPM.163.110
]
77.
[DOI:
10.1002/lpor.202300141
]
[
IF:
10.947
, SJR:
3.172
]
76.
Light-Controlled Multiphase Structuring of Perovskite Crystal Enabled by Thermoplasmonic Metasurface
[DOI:
10.1021/acsnano.3c00373
]
[
IF:
18.027
, SJR:
4.611
]
75.
[DOI:
10.1039/d3nr00214d
]
[
IF:
8.307
, SJR:
1.744
]
74.
[DOI:
10.1021/acsanm.2c05469
]
[
IF:
6.140
, SJR:
1.178
]
73.
[DOI:
10.1021/acs.nanolett.2c04792
]
[
IF:
12.262
, SJR:
3.761
]
72.
[DOI:
10.1021/acsnano.2c09883
]
[
IF:
18.027
, SJR:
4.611
]
71.
[DOI:
10.1002/adom.202202407
]
70.
[DOI:
10.1021/acsnano.2c11013
]
[
IF:
18.027
, SJR:
4.611
]
2022
69.
[DOI:
10.1016/j.photonics.2022.101103
]
[
IF:
3.008
, SJR:
0.553
]
68.
[DOI:
10.1063/5.0106895
]
[
IF:
3.971
, SJR:
1.025
]
67.
[DOI:
10.1016/j.omx.2022.100214
]
66.
[DOI:
10.1002/lpor.202100728
]
[
IF:
10.947
, SJR:
3.172
]
65.
[DOI:
10.1002/adfm.202109834
]
[
IF:
19.924
, SJR:
5.000
]
64.
[DOI:
10.1088/1742-6596/2172/1/012004
]
[
SJR:
0.210
]
63.
[DOI:
10.1021/acsphotonics.1c01347
]
[
IF:
7.077
, SJR:
2.273
]
2021
62.
[DOI:
10.1088/1742-6596/2086/1/012131
]
[
SJR:
0.210
]
61.
[DOI:
10.1021/acs.nanolett.1c03656
]
[
IF:
12.262
, SJR:
3.761
, NI:
0,43
]
60.
[DOI:
10.1088/1742-6596/2015/1/012087
]
[
SJR:
0.210
]
59.
[DOI:
10.1088/1742-6596/2015/1/012115
]
[
SJR:
0.210
]
58.
[DOI:
10.1021/acs.jpclett.1c01968
]
[
IF:
6.475
, SJR:
2.563
, NI:
0,77
]
57.
[DOI:
10.1002/lpor.202100094
]
[
IF:
10.947
, SJR:
3.172
]
56.
[DOI:
10.1364/prj.422640
]
[
IF:
7.254
, SJR:
1.984
]
55.
[DOI:
10.1063/5.0048969
]
[
IF:
3.971
, SJR:
1.025
, NI:
0,53
]
54.
[DOI:
10.1021/acs.jpcc.1c01492
]
[
IF:
4.126
, SJR:
1.477
]
53.
[DOI:
10.1021/acs.chemmater.0c04263
]
[
IF:
10.508
, SJR:
2.930
]
52.
[DOI:
10.1063/5.0042557
]
[
IF:
3.971
, SJR:
1.025
, NI:
0,75
]
51.
[DOI:
10.3390/nano11020412
]
[
IF:
5.719
, SJR:
0.839
]
2020
50.
[DOI:
10.1002/adom.202001715
]
[
IF:
9.926
, SJR:
2.890
]
49.
[DOI:
10.1063/5.0031747
]
[
SJR:
0.190
]
48.
[DOI:
10.1063/5.0031811
]
[
SJR:
0.190
]
47.
[DOI:
10.1063/5.0032230
]
[
SJR:
0.190
]
46.
[DOI:
10.1002/lpor.202000338
]
[
IF:
13.138
, SJR:
3.778
]
45.
[DOI:
10.1021/acsnano.0c05710
]
[
IF:
15.881
, SJR:
5.554
, NI:
0.13
]
44.
[DOI:
10.3390/nano10101937
]
[
IF:
5.076
, SJR:
0.919
]
43.
Broadband transparency of perovskite metasurfaces driven by Kerker effect
[DOI:
10.1117/12.2568566
]
42.
[DOI:
10.1515/nanoph-2020-0207
]
[
IF:
8.449
, SJR:
2.717
]
41.
[DOI:
10.1021/acsnano.0c01104
]
[
IF:
15.881
, SJR:
5.554
, NI:
0.56
]
40.
[DOI:
10.1088/1742-6596/1461/1/012071
]
[
SJR:
0.227
]
39.
[DOI:
10.1088/1742-6596/1461/1/012086
]
[
SJR:
0.227
]
38.
[DOI:
10.1088/1742-6596/1461/1/012091
]
[
SJR:
0.227
]
37.
[DOI:
10.1515/nanoph-2019-0443
]
[
IF:
8.449
, SJR:
2.717
]
2019
36.
[DOI:
10.1515/nanoph-2019-0377
]
[
IF:
7.491
, SJR:
2.618
]
35.
[DOI:
10.1016/j.jlumin.2019.116985
]
[
IF:
3.280
, SJR:
0.626
]
34.
[DOI:
10.1088/1742-6596/1410/1/012077
]
[
SJR:
0.221
]
33.
[DOI:
10.1039/c9cp03656c
]
[
IF:
3.430
, SJR:
1.143
]
32.
[DOI:
10.1021/acsnano.8b08948
]
[
IF:
14.588
, SJR:
6.131
, NI:
0.54
]
2018
31.
[DOI:
10.1021/acsami.8b17396
]
[
IF:
8.097
, SJR:
2.784
]
30.
[DOI:
10.1088/1742-6596/1092/1/012122
]
[
SJR:
0.241
]
29.
[DOI:
10.1021/acs.nanolett.8b01912
]
[
IF:
12.279
, SJR:
6.211
]
28.
[DOI:
10.1002/adom.201800784
]
[
IF:
7.125
, SJR:
2.711
]
27.
Фотоиндуцированная миграция ионов в оптически резонансных перовскитных наночастицах
26.
[DOI:
10.1039/C8DT01336E
]
[
IF:
4.052
, SJR:
1.120
]
2017
25.
[DOI:
10.1016/j.jlumin.2017.06.058
]
[
IF:
2.732
, SJR:
0.694
]
24.
[DOI:
10.1039/C7DT01340J
]
[
IF:
4.099
, SJR:
1.306
]
23.
[DOI:
10.1016/j.matchemphys.2016.11.053
]
[
IF:
2.210
, SJR:
0.615
]
22.
[DOI:
10.1016/j.ica.2016.10.025
]
[
IF:
2.264
, SJR:
0.485
]
2016
21.
[DOI:
10.1070/RCR4665
]
[
IF:
4.058
, SJR:
0.924
]
20.
,
vol.
163
,
pp.
134-139
,
2016
[DOI:
10.1016/j.saa.2016.03.026
]
19.
[DOI:
10.1515/oph-2016-0007
]
18.
[DOI:
10.1039/C5DT04636J
]
[
IF:
4.029
, SJR:
1.229
]
17.
[DOI:
10.1039/C5DT04742K
]
[
IF:
4.029
, SJR:
1.229
]
2015
16.
[DOI:
10.1016/j.synthmet.2015.02.030
]
[
IF:
2.299
, SJR:
0.624
]
15.
[DOI:
10.1002/ejic.201403186
]
[
IF:
2.686
, SJR:
0.983
]
14.
[DOI:
10.1016/j.jorganchem.2014.11.024
]
[
IF:
2.336
, SJR:
0.703
]
13.
[DOI:
10.1039/C4DT03106G
]
[
IF:
4.177
, SJR:
1.302
]
12.
[DOI:
10.1039/C4CP05928J
]
[
IF:
4.449
, SJR:
1.725
]
2014
11.
[DOI:
10.1016/S1002-0721(14)60189-7
]
[
IF:
1.261
, SJR:
0.528
]
10.
[DOI:
10.1039/C3TC32054E
]
[
IF:
4.696
, SJR:
1.517
]
9.
[DOI:
10.1039/C4RA03915G
]
[
IF:
3.840
, SJR:
1.113
]
2013
8.
[DOI:
10.1016/j.poly.2012.10.007
]
[
IF:
2.047
, SJR:
0.551
]
7.
[DOI:
10.1016/j.synthmet.2012.12.034
]
[
IF:
2.222
, SJR:
0.719
]
6.
[DOI:
10.1039/C3RA43885F
]
[
IF:
3.708
, SJR:
1.119
]
5.
[DOI:
10.1039/C3DT51706C
]
[
IF:
4.097
, SJR:
1.441
]
2012
4.
[DOI:
10.1016/j.orgel.2012.09.021
]
[
IF:
3.836
, SJR:
1.955
]
3.
[DOI:
10.1134/S0018143912050062
]
[
IF:
0.644
, SJR:
0.296
]
2011
2.
[DOI:
10.1039/C1DT10318K
]
[
IF:
3.838
, SJR:
1.163
]
1.
[DOI:
10.1039/C1JM13023D
]
[
IF:
5.968
, SJR:
2.614
]
Основы оптоэлектроники (in English
)
Название патента | Авторы | Тип | Год |
---|---|---|---|
Способ изготовления носителя для записи фотолюминесцентного микроизображения | Анатолий Пушкарев, Сергей Аношкин, Елизавета Сапожникова , Дмитрий Татаринов | Изобретение | 2024 |
Способ изготовления высококристаллических неорганических перовскитных тонких пленок CsPbBr3 | Анатолий Пушкарев, Сергей Аношкин, Сергей Макаров, Дмитрий Татаринов | Изобретение | 2023 |
Способ получения сенсора хлороводорода в воздухе | Анатолий Пушкарев, Дарья Маркина, Сергей Аношкин, Елизавета Сапожникова , Сергей Макаров | Изобретение | 2023 |
Способ получения сверхрешеток из нанокристаллов свинцово-галогенидного перовскита | Сергей Макаров, Михаил Баранов, Анатолий Пушкарев, Александр Марунченко | Изобретение | 2022 |
Синий светодиод на основе галогенидных перовскит-полимерных материалов и способ его изготовления | Сергей Макаров, Анатолий Пушкарев, Сергей Аношкин | Изобретение | 2022 |
Модуль умного окна | Эдуард Даниловский, Лев Зеленков, Анатолий Пушкарев, Дмитрий Гец, Сергей Аношкин, Сергей Макаров, Анвар Захидов | Полезная модель | 2021 |
Способ изготовления неорганических хлорсодержащих перовскитных тонких пленок | Татьяна Ляшенко, Сергей Аношкин, Сергей Макаров, Анатолий Пушкарев | Изобретение | 2020 |
Способ получения электролюминесцирующих смешанных свинцово-галоидных перовскитных материалов с высокой фазовой стабильностью | Анатолий Пушкарев, Татьяна Ляшенко, Сергей Аношкин, Сергей Макаров | Изобретение | 2020 |
Cпособ изготовления неорганических перовскитных нановискеров типа CsPbBr3 | Сергей Макаров, Анатолий Пушкарев, Вячеслав Королёв, Дарья Маркина | Изобретение | 2019 |