Михаил Игоревич Петров
Ученая степень
Кандидат физико-математических наук
Основная должность
Основная должность
Assistant Professor
Должность
- Senior Research Scientist
- ординарный доцент
Мобильный телефон
+79219781131
Email
m.petrov@metalab.ifmo.ru
trisha.petrov@gmail.com
Дата рождения
Адрес офиса
Россия, Ломоносова, 9, "Phoenix" ,
ORCID
Номер автора ORCID
0000-0001-8155-9778
Researcher ID
Researcher ID в базе данных Web of Science
K-5924-2012
Ссылка на профиль в Google Scholar
CV
Образование
Сентябрь
2003
-
Июнь
2007
Учебное заведение
Санкт-Петербургский Политехнический Университет им. Петра Великого
Профессиональная область
Физика твердого тела
Полученное звание
бакалавр
Сентябрь
2007
-
Июнь
2009
Учебное заведение
Санкт-Петербургский Политехнический Университет им. Петра Великого
Профессиональная область
Физика твердого тела
Полученное звание
Магистр
Сентябрь
2009
-
Июнь
2013
Учебное заведение
University of Eastern Finland
Профессиональная область
Photonics
Полученное звание
PhD
Сентябрь
2009
-
Декабрь
2012
Учебное заведение
Санкт-Петербургский Академический Университет
Профессиональная область
Физика конденсированного состояния
Полученное звание
кандидат физ.-мат. наук
Статьи
Impact Factor
Scientific Journal Ranking
2024
140.
[DOI:
10.1103/physrevapplied.22.064041
]
[
IF:
4.985
, SJR:
1.883
]
139.
[DOI:
10.1063/5.0236022
]
[
IF:
2.546
, SJR:
0.699
]
138.
[DOI:
10.1103/physreva.110.l011501
]
[
IF:
3.140
, SJR:
1.391
]
137.
[DOI:
10.1103/physrevb.109.245416
]
[
IF:
4.036
, SJR:
1.780
]
136.
[DOI:
10.1002/lpor.202301399
]
[
IF:
10.947
, SJR:
3.172
]
135.
[DOI:
10.1002/adom.202400228
]
[
IF:
9.926
, SJR:
2.890
]
134.
[DOI:
10.1103/physrevb.109.144102
]
[
IF:
3.908
, SJR:
1.537
]
133.
[DOI:
10.1021/acsphotonics.3c01874
]
[
IF:
7.077
, SJR:
2.273
]
132.
[DOI:
10.1515/nanoph-2023-0922
]
[
IF:
7.923
, SJR:
2.124
]
131.
Non-radiative configurations of a few quantum emitters ensembles: Evolutionary optimization approach
[DOI:
10.1063/5.0189405
]
[
IF:
3.971
, SJR:
1.043
]
130.
[DOI:
10.1021/acsphotonics.3c01166
]
[
IF:
7.077
, SJR:
2.273
]
129.
[DOI:
10.1515/nanoph-2023-0624
]
[
IF:
7.923
, SJR:
2.124
]
2023
128.
[DOI:
10.1021/acs.nanolett.3c03597
]
[
IF:
12.262
, SJR:
3.761
]
127.
[DOI:
10.1109/dd58728.2023.10325819
]
126.
[DOI:
10.3390/photonics10111248
]
[
IF:
2.536
, SJR:
0.558
]
125.
[DOI:
10.1109/metamaterials58257.2023.10289310
]
124.
[DOI:
10.1038/s41377-023-01262-8
]
[
IF:
17.455
, SJR:
5.497
]
123.
[DOI:
10.1002/adfm.202307660
]
[
IF:
19.924
, SJR:
5.000
]
122.
[DOI:
10.1103/physrevlett.130.243802
]
[
IF:
9.161
, SJR:
3.688
]
121.
[DOI:
10.1016/b978-0-32-398384-6.00017-6
]
120.
[DOI:
10.1103/revmodphys.95.015002
]
[
IF:
50.485
, SJR:
20.343
]
119.
[DOI:
10.1021/acsnano.2c11509
]
[
IF:
18.027
, SJR:
4.611
]
118.
[DOI:
10.1103/physrevb.107.l041304
]
[
IF:
3.908
, SJR:
1.537
]
2022
117.
[DOI:
10.1103/physreva.106.043723
]
[
IF:
2.971
, SJR:
1.183
]
116.
Collective states with high quality factors in chains of dielectric resonators
[DOI:
10.18721/JPM.153.341
]
115.
[DOI:
10.1364/ol.464037
]
[
IF:
3.560
, SJR:
1.263
]
114.
[DOI:
10.1109/iclo54117.2022.9839893
]
113.
[DOI:
10.1039/d2nr00641c
]
[
IF:
8.307
, SJR:
1.744
]
112.
[DOI:
10.1515/nanoph-2022-0074
]
[
IF:
7.923
, SJR:
2.124
]
111.
[DOI:
10.1103/physrevb.105.165311
]
[
IF:
3.908
, SJR:
1.537
, NI:
1
]
110.
[DOI:
10.1063/5.0088217
]
[
IF:
3.791
, SJR:
1.182
]
109.
[DOI:
10.1103/physrevlett.128.084301
]
[
IF:
9.185
, SJR:
3.246
, NI:
1
]
108.
[DOI:
10.1364/ol.444348
]
[
IF:
3.560
, SJR:
1.263
]
107.
[DOI:
10.1088/2040-8986/ac4a21
]
[
IF:
2.516
, SJR:
0.918
]
2021
106.
[DOI:
10.1021/acsphotonics.1c01262
]
[
IF:
7.077
, SJR:
2.273
]
105.
[DOI:
10.1088/1742-6596/2015/1/012172
]
[
SJR:
0.210
]
104.
[DOI:
10.1088/1742-6596/2015/1/012104
]
[
IF:
0.550
, SJR:
0.210
]
103.
[DOI:
10.1088/1742-6596/2015/1/012161
]
[
SJR:
0.210
]
102.
[DOI:
10.1088/1742-6596/2015/1/012129
]
[
IF:
0.550
, SJR:
0.210
]
101.
[DOI:
10.1088/1742-6596/2015/1/012040
]
[
SJR:
0.210
]
100.
[DOI:
10.1088/1742-6596/2015/1/012152
]
[
SJR:
0.210
]
99.
[DOI:
10.1088/1742-6596/2015/1/012070
]
[
SJR:
0.210
]
98.
[DOI:
10.1021/acsanm.1c02558
]
[
IF:
6.140
, SJR:
1.178
]
97.
Opto-thermally controlled beam steering in nonlinear all-dielectric metastructures
[DOI:
10.1364/oe.440564
]
[
IF:
3.833
, SJR:
1.233
]
96.
[DOI:
10.1364/cleo_qels.2021.fth4i.2
]
95.
[DOI:
10.1364/aop.426047
]
[
IF:
24.750
, SJR:
7.473
]
94.
[DOI:
10.1021/acs.nanolett.1c01025
]
[
IF:
12.262
, SJR:
3.761
, NI:
0,33
]
93.
[DOI:
10.31857/s1234567821080115
]
[
IF:
1.532
, SJR:
0.574
]
92.
[DOI:
10.1103/physreva.103.043703
]
[
IF:
2.971
, SJR:
1.183
]
91.
[DOI:
10.1002/adpr.202000139
]
2020
90.
[DOI:
10.1021/acsphotonics.0c01319
]
[
IF:
7.529
, SJR:
2.735
]
89.
[DOI:
10.1063/5.0032103
]
[
SJR:
0.190
]
88.
[DOI:
10.1063/5.0031985
]
[
SJR:
0.190
]
87.
[DOI:
10.1063/5.0032100
]
[
SJR:
0.190
]
86.
[DOI:
10.1063/5.0032487
]
[
SJR:
0.190
]
85.
[DOI:
10.1063/5.0031864
]
[
SJR:
0.190
]
84.
[DOI:
10.1063/5.0031853
]
[
SJR:
0.190
]
83.
[DOI:
10.1021/acsnano.0c04872
]
[
IF:
15.881
, SJR:
5.554
, NI:
0.38
]
82.
Engineering of the Second‐Harmonic Emission Directionality with III–V Semiconductor Rod Nanoantennas
[DOI:
10.1002/lpor.202000028
]
[
IF:
13.138
, SJR:
3.778
]
81.
[DOI:
10.3390/nano10071306
]
[
IF:
5.076
, SJR:
0.919
]
80.
[DOI:
10.1088/1742-6596/1461/1/012179
]
[
SJR:
0.227
]
79.
[DOI:
10.1088/1742-6596/1461/1/012042
]
[
SJR:
0.227
]
78.
[DOI:
10.1088/1742-6596/1461/1/012070
]
[
SJR:
0.227
]
2019
77.
[DOI:
10.1088/1742-6596/1410/1/012077
]
[
SJR:
0.221
]
76.
75.
[DOI:
10.1021/acsphotonics.9b01157
]
[
IF:
6.864
, SJR:
2.974
]
74.
[DOI:
10.1109/metamaterials.2019.8900887
]
73.
[DOI:
10.1103/physrevlett.123.183901
]
[
IF:
8.385
, SJR:
3.588
, NI:
0.5
]
72.
[DOI:
10.1103/physreva.100.033840
]
[
IF:
2.777
, SJR:
1.416
]
71.
[DOI:
10.1103/PhysRevB.100.115303
]
[
IF:
3.575
, SJR:
1.811
]
70.
[DOI:
10.1109/CLEOE-EQEC.2019.8872429
]
69.
[DOI:
10.1134/s0021364019130010
]
[
IF:
1.399
, SJR:
0.583
]
68.
[DOI:
10.1063/1.5087248
]
[
IF:
2.286
, SJR:
0.728
]
67.
[DOI:
10.1021/acs.nanolett.8b04089
]
[
IF:
11.238
, SJR:
5.786
, NI:
0.36
]
66.
[DOI:
10.17586/2220-8054-2018-9-5-609-613
]
65.
[DOI:
10.1103/physrevb.99.075425
]
[
IF:
3.575
, SJR:
1.811
]
64.
[DOI:
10.1103/PhysRevB.99.125416
]
[
IF:
3.575
, SJR:
1.811
]
2018
63.
[DOI:
10.1088/1742-6596/1124/5/051021
]
[
SJR:
0.241
]
62.
[DOI:
10.1109/metamaterials.2018.8534098
]
61.
[DOI:
10.1109/metamaterials.2018.8534067
]
60.
[DOI:
10.1088/1742-6596/1092/1/012105
]
[
SJR:
0.241
]
59.
[DOI:
10.1364/NP.2018.NpM2I.5
]
58.
[DOI:
10.1021/acsphotonics.8b00775
]
[
IF:
7.143
, SJR:
2.983
]
57.
[DOI:
10.1088/1742-6596/1092/1/012132
]
[
SJR:
0.241
]
56.
[DOI:
10.1088/1742-6596/1092/1/012037
]
[
SJR:
0.241
]
55.
[DOI:
10.1088/1742-6596/1092/1/012063
]
[
SJR:
0.241
]
54.
[DOI:
10.1088/1367-2630/aadf6d
]
[
IF:
3.783
, SJR:
1.664
]
53.
[DOI:
10.1088/1742-6596/993/1/012019
]
[
SJR:
0.241
]
52.
[DOI:
10.1088/1742-6596/993/1/012022
]
[
SJR:
0.241
]
51.
[DOI:
doi.org/10.1002/lpor.201700168
]
[
IF:
9.056
, SJR:
3.821
]
50.
The conformation of BSA adsorbed to the surface of single all-dielectric nanoparticles following light-induced heating
[DOI:
10.1002/jbio.201700322
]
[
IF:
3.763
, SJR:
1.039
]
49.
[DOI:
10.1103/PhysRevB.97.085414
]
[
IF:
3.736
, SJR:
1.502
]
48.
[DOI:
10.1109/piers.2017.8261981
]
47.
[DOI:
10.1109/piers.2017.8262339
]
46.
[DOI:
10.1109/comcas.2017.8244856
]
2017
45.
[DOI:
10.1109/DD.2017.8168020
]
44.
The motion of nanoparticles under the non-conservative forces mediated by surface plasmon polaritons
[DOI:
10.1088/1742-6596/917/6/062056
]
[
SJR:
0.240
]
43.
[DOI:
10.1109/dd.2017.8168050
]
42.
,
2017
[DOI:
10.1109/metamaterials.2017.8107912
]
41.
[DOI:
10.1063/1.4998078
]
[
SJR:
0.165
]
40.
[DOI:
10.1038/lsa.2016.258
]
[
IF:
14.098
, SJR:
5.576
]
39.
[DOI:
10.1103/PhysRevB.96.115162
]
[
IF:
3.813
]
38.
[DOI:
10.1063/1.4998064
]
[
SJR:
0.165
]
37.
[DOI:
10.1021/acs.nanolett.7b03248
]
[
IF:
12.080
, SJR:
7.447
]
36.
[DOI:
10.1021/acs.nanolett.7b01940
]
[
IF:
12.080
, SJR:
7.447
]
35.
[DOI:
10.1021/acs.nanolett.7b00183
]
[
IF:
12.080
, SJR:
7.447
]
34.
[DOI:
10.1021/acs.nanolett.7b00392
]
[
IF:
12.080
, SJR:
7.447
]
33.
[DOI:
10.1364/JOSAB.34.000D18
]
[
IF:
1.843
, SJR:
0.850
]
32.
[DOI:
10.1186/s41476-017-0033-0
]
[
IF:
1.250
, SJR:
0.420
]
31.
[DOI:
10.1103/PhysRevB.94.245416
]
[
IF:
3.813
]
2016
30.
[DOI:
10.1109/DD.2016.7756826
]
29.
[DOI:
10.1109/DD.2016.7756833
]
28.
[DOI:
10.1109/DD.2016.7756811
]
27.
[DOI:
10.1109/DD.2016.7756841
]
26.
[DOI:
10.1103/PhysRevB.93.205127
]
[
IF:
3.836
]
25.
[DOI:
10.1063/1.4952740
]
[
IF:
3.411
, SJR:
1.673
]
24.
[DOI:
10.1038/srep22136
]
[
IF:
4.259
, SJR:
1.692
]
23.
[DOI:
10.1002/lpor.201500173
]
[
IF:
8.434
, SJR:
4.013
]
2015
22.
[DOI:
10.1109/DD.2015.7354876
]
21.
[DOI:
10.1109/DD.2015.7354869
]
20.
[DOI:
10.1002/pssr.201510330
]
[
IF:
2.142
, SJR:
1.159
]
19.
[DOI:
10.1103/PhysRevB.92.155415
]
[
IF:
3.718
]
18.
[DOI:
10.1117/12.2176880
]
[
SJR:
0.248
]
17.
[DOI:
10.1103/PhysRevA.91.023821
]
[
IF:
2.765
, SJR:
2.201
]
2014
16.
[DOI:
10.1134/S1063783414090145
]
[
IF:
0.821
, SJR:
0.465
]
2013
15.
[DOI:
10.1186/1556-276X-8-260
]
[
IF:
2.481
, SJR:
0.805
]
14.
[DOI:
10.1186/1556-276X-8-324
]
[
IF:
2.481
, SJR:
0.805
]
2012
13.
[DOI:
10.1088/0022-3727/46/4/045302
]
12.
[DOI:
10.1166/jnn.2012.6477
]
11.
[DOI:
10.1134/S1990793112050235
]
[
IF:
0.209
, SJR:
0.195
]
10.
[DOI:
10.1063/1.4742975
]
[
IF:
2.210
, SJR:
1.312
]
9.
[DOI:
10.1002/pssb.201248173
]
[
IF:
1.316
, SJR:
0.931
]
8.
[DOI:
10.1063/1.4714350
]
[
IF:
2.210
, SJR:
1.312
]
7.
[DOI:
10.1142/S0218216512500691
]
[
IF:
0.403
, SJR:
0.533
]
2011
6.
[DOI:
10.1063/1.3582131
]
[
IF:
2.168
, SJR:
1.374
]
5.
[DOI:
10.1063/1.3511746
]
[
IF:
2.168
, SJR:
1.374
]
2010
4.
[DOI:
10.1134/S1063785010110167
]
[
IF:
0.496
, SJR:
0.178
]
3.
[DOI:
10.1021/jp1033905
]
[
IF:
4.524
, SJR:
2.462
]
2.
[DOI:
10.17323/1609-4514-2010-10-3-611-628
]
[
IF:
0.721
]
1.
[DOI:
10.1134/S1063784210100087
]
[
IF:
0.535
, SJR:
0.159
]
Оптомеханика (in English
)
Наноплазмоника (in English
)
Название патента | Авторы | Тип | Год |
---|---|---|---|
Источник генерации второй гармоники | Максим Тарасов, Михаил Петров, Сергей Макаров | Полезная модель | 2018 |