Topological photonics

Topology as a branch of mathematics studies the properties of the objects that remain conserved under the continuous deformations. However, despite its abstact nature topology is directly related to physics providing an explanation of precise quantization of Hall resistance in quantum Hall effect which takes place even in the presence of defects, the phenomenon of anomalous velocity and the range of other phenomena. The importance of discovery of topological phases of matter and topological phase transitions has been marked by 2016 Nobel Prize in Physics.

Topological photonics investigates the possibilities to realize the topological states of light protected from scattering on defects and imperfections of the structure and promising the next generation of devices for all-optical signal processing protected from the disorder. Our group at ITMO studies the topological states of classical and quantum light developing both fundamental and applied concepts.

This block is broken or missing. You may be missing content or you might need to enable the original module.

Staff

Publications

2019

30.
Sunil Mittal
Venkata Vikram Orre
Guanyu Zhu
Mohammad Hafezi
  , 2019
[DOI:
10.1038/s41566-019-0452-0
] [IF:
37.852
, SJR:
15.831
]
29.
Experimental Realization of Three-Dimensional All-Dielectric Photonic Topological Insulators
Dmitry Filonov
Alexander Khanikaev
[DOI:
10.1109/USNC-URSI.2018.8602701
]
28.
Denis Sokolov
Alexander Khanikaev
, vol.
44
, pp.
1694-1697
, 2019
[DOI:
10.1364/OL.44.001694
] [IF:
3.416
, SJR:
1.864
]
27.
Xiang Ni
S. Hossein Mousavi
Daria A. Smirnova
Andrea Alú
Alexander B. Khanikaev
, vol.
114
, pp.
31103
, 2019
[DOI:
10.1063/1.5055601
] [IF:
3.411
, SJR:
1.132
]

2018

26.
Marko Di Liberto
Alessio Recati
Iacopo Carusotto
Chiara Menotti
, vol.
98
, pp.
63625
, 2018
[DOI:
10.1103/PhysRevA.98.063625
] [IF:
2.925
, SJR:
1.281
]
24.
X. Ni
D.A. Smirnova
D. Korobkin
Andrea Alú
Alexander Khanikaev
, vol.
1092
, pp.
12176
, 2018
[DOI:
10.1088/1742-6596/1092/1/012176
] [IF:
0.360
, SJR:
0.240
]
22.
, vol.
98
, pp.
45415
, 2018
[DOI:
10.1103/PhysRevB.98.045415
] [IF:
3.836
, SJR:
1.939
]
21.
Xiang Ni
David Purtseladze
Daria A. Smirnova
Andrea Alú
Alexander B. Khanikaev
  , vol.
4
, pp.
eaap8802
, 2018
[DOI:
10.1126/sciadv.aap8802
] [IF:
11.511
, SJR:
5.820
]
20.
Xiang Ni
Daria A. Smirnova
Dmitry Korobkin
Andrea Alú
Alexander Khanikaev
  , vol.
9
, pp.
909
, 2018
[DOI:
10.1038/s41467-018-03330-9
] [IF:
12.124
, SJR:
6.399
]
18.
, vol.
97
, pp.
115119
, 2018
[DOI:
10.1103/PhysRevB.97.115119
] [IF:
3.836
, SJR:
1.939
]
17.
Sergey Kruk
Daria Smirnova
Lei Wang
A Shorokhov
Ivan Kravchenko
Barry Luther-Davies
  , vol.
14
, pp.
126
, 2018
[DOI:
10.1038/s41565-018-0324-7
] [IF:
37.500
, SJR:
20.600
]

2017

13.
D. Korobkin
X. Ni
D.A. Smirnova
Andrea Alú
A.B. Khanikaev
, vol.
1874
, pp.
30014
, 2017
[DOI:
10.1063/1.4998043
]
11.
Ni Xiang
Andrea Alú
Alexander Khanikaev
, vol.
19
, 2017
[DOI:
10.1088/1367-2630/aa6996
] [IF:
3.786
, SJR:
1.788
]
10.
9.
S. Kruk
D. Denkova
I. Kravchenko
A.E. Miroshnichenko
D. Neshev
  , pp.
1603190
, 2017
[DOI:
10.1002/smll.201603190
] [IF:
8.643
, SJR:
3.324
]
8.
S. Hossein Mousavi
Xiang Ni
Daria Smirnova
Alexander Khanikaev
  , vol.
11
, pp.
130-137
, 2017
[DOI:
10.1038/nphoton.2016.253
] [IF:
37.852
, SJR:
15.831
]

2016

6.
Ye Feng Yu
Arseniy Kuznetsov
A.E. Miroshnichenko
, vol.
10
, pp.
656–664
, 2016
[DOI:
10.1002/lpor.201600042
]
5.
Alexander Khanikaev
Dmitry Filonov
Daria A. Smirnova
A.E. Miroshnichenko
, vol.
6
, pp.
22270
, 2016
[DOI:
10.1038/srep22270
] [IF:
4.259
, SJR:
1.625
]

2015

3.
  , vol.
7
, pp.
11904-11908
, 2015
[DOI:
10.1039/C5NR00231A
] [IF:
7.367
, SJR:
2.769
]
2.
  , vol.
114
, pp.
123901
, 2015
[DOI:
10.1103/PhysRevLett.114.123901
] [IF:
8.462
, SJR:
3.560
]

2014

1.
, vol.
1
, pp.
101–105
, 2014
[DOI:
10.1021/ph4000949
] [IF:
6.880
, SJR:
3.516
]