Multipole electrodynamics

Иллюстрация свойств пространственно-временной  инверсии координат для полного набора диполей: электрического, тороидального электрического, магнитного и тороидального магнитного.

There is a common belief, seemingly relying on seminal textbook of Landau and Lifshitz, that there is impossible to achieve magnetic responses at high, e.g. optical frequencies. However, it was recently shown, that multipole moments in particles made of high refractive index materials, e.g. silicon or germanium, could indeed exhibit magnetic properties. This discovery started the era of ‘All-dielectric Nanophotonics’, having the studies of novel types of light-matter interactions, light harvesting and concentration, novel type of magnetic metasurfaces, detection of magnetic transitions in atoms, and others as primary objectives. 

         Our group investigates all-dielectric systems by applying approaches of configuring multipole spectrum of complex geometries. Effects of induced bi-anisotropy, enhancement of magnetic moments, and harvesting of magnetic fields and their concentration. Those basic building blocks are aimed to be employed for large scale metasurfaces for photo-voltaic applications.

          Opto-mechanical tools could also contribute to development of all-dielectric devices. Multipole moments in particles could be utilized for directional scattering and, as the result, tailor characteristics of mechanical forces. For example, an interplay between electric and magnetic dipolar responses could lead to a unique beaming of scattered radiation. This additional flexibility in control of macroscopic structural responses was shown to enable above mentioned ‘tractor beams’, side control motion, levitation and others.   

Staff

Иллюстрация свойств пространственно-временной  инверсии координат для полного набора диполей: электрического, тороидального электрического, магнитного и тороидального магнитного.

Publications

2019

35.
Denis Novitsky
Andrey Novitsky
, vol.
99
, pp.
043812
, 2019
[DOI:
10.1103/physreva.99.043812
] [ IF:
2.907
, SJR:
1.058
]
33.
Yakov Greenberg
Yuan Hsing Fu
Andrey Evlyukhin
Alina Karabchevsky
, vol.
9
, pp.
3438
, 2019
[DOI:
10.1038/s41598-019-40226-0
] [ IF:
4.011
, SJR:
1.414
]
32.
Dmitry Filonov
Andrey Evlyukhin
Alexey Kadochkin
Elizaveta Nenasheva
Pavel Ginzburg
, vol.
98
, pp.
165419
, 2019
[DOI:
10.1103/PhysRevB.98.165419
] [ IF:
3.736
, SJR:
1.503
]
31.
Viktoriia Babicheva
Alina Karabchevsky
Andrey B. Evlyukhin
, vol.
99
, pp.
45424
, 2019
[DOI:
10.1103/PhysRevB.99.045424
] [ IF:
3.736
, SJR:
1.503
]
30.
A. Kucherik
S. Kutrovskaya
A. Osipov
M. Gerke
I. Chestnov
S. Arakelian
A.V. Kavokin
, vol.
9
, pp.
338
, 2019
[DOI:
10.1038/s41598-018-36851-w
] [ IF:
4.011
, SJR:
1.414
]
29.
Viktoriia Babicheva
Alina Karabchevsky
Andrey B. Evlyukhin
, vol.
10927
, pp.
109270
, 2019
[DOI:
10.1117/12.2506973
] [ SJR:
0.238
]
28.
The high-order toroidal moments and anapole states in all-dielectric photonics
Pavel A. Dergachev
Andrey B. Evlyukhin
A.E. Miroshnichenko
  , vol.
13
, pp.
1800266
, 2019
[DOI:
10.1002/lpor.201800266
] [ IF:
9.056
, SJR:
3.821
]
27.
Denis Novitsky
, vol.
531(2)
, pp.
1800405
, 2019
[DOI:
10.1002/andp.201800405
] [ IF:
3.276
, SJR:
1.091
]

2018

26.
, vol.
1874
, pp.
30003
, 2018
[DOI:
10.1063/1.4998032
] [ SJR:
0.165
]
25.
A. Novitsky
A.V. Lavrinenko
, vol.
95
, pp.
53818
, 2018
[DOI:
10.1103/PhysRevA.95.053818
] [ IF:
2.909
, SJR:
1.288
]
24.
Denis Zhigunov
Andrey B. Evlyukhin
Urs Zywietz
B. Chichkov
, vol.
5
, pp.
977-983
, 2018
[DOI:
10.1021/acsphotonics.7b01275
] [ IF:
6.880
, SJR:
3.376
]
22.
D. Vestler
M.E. Nasir
A. Ben-Moshe
A.V. Krasavin
T. Levi-Belenkova
Pavel Ginzburg
G. Markovich
A.V. Zayats
, vol.
26
, pp.
17841-17848
, 2018
[DOI:
10.1364/OE.26.017841
] [ IF:
3.356
, SJR:
1.519
]
19.
Liyang Yue
Oleg Minin
Zengbo Wang
James Monks
Igor Minin
, vol.
43
, pp.
771-774
, 2018
[DOI:
10.1364/OL.43.000771
] [ IF:
3.589
, SJR:
1.790
]

2017

18.
, vol.
96
, pp.
35443
, 2017
[DOI:
10.1103/PhysRevB.96.035443
] [ IF:
3.836
, SJR:
2.339
]

2016

12.
V. Kozlov
Dmitry Filonov
Steinberg Ben Z.
Pavel Ginzburg
, vol.
109
, pp.
203503
, 2016
[DOI:
10.1063/1.4967238
] [ IF:
3.142
, SJR:
1.499
]
11.
Dmitry Filonov
Pavel Ginzburg
[DOI:
10.1364/JOSAA.33.001910
] [ IF:
1.457
, SJR:
0.918
]
10.
, vol.
186
, pp.
727-772
, 2016
[DOI:
10.3367/UFNr.2016.02.037703
] [ IF:
2.126
, SJR:
0.867
]
9.
, vol.
6
, pp.
22546
, 2016
[DOI:
10.1038/srep22546
] [ IF:
5.228
, SJR:
2.034
]

2015

8.
, vol.
119
, pp.
367–380
, 2015
[DOI:
10.1134/S0030400X15090040
] [ IF:
0.723
, SJR:
0.304
]
6.
, vol.
91
, pp.
205126
, 2015
[DOI:
10.1103/PhysRevB.91.205126
] [ IF:
3.736
, SJR:
2.762
]
4.
, vol.
91
, pp.
125426
, 2015
[DOI:
10.1103/PhysRevB.91.125426
] [ IF:
3.736
, SJR:
2.762
]
3.
Pavel Ginzburg
Powell David A.
Krasavin Alexey V.
Gregory_A. Wurtz
Podolskiy Viktor A.
Anatoly Zayats
, vol.
92
, pp.
195127
, 2015
[DOI:
10.1103/PhysRevB.92.195127
] [ IF:
3.736
, SJR:
2.762
]

2013

1.
S.V. Sukhov
S.A. Nikitov
[DOI:
10.1016/j.photonics.2013.08.004
] [ IF:
1.792
, SJR:
0.962
]