Multipole electrodynamics

Иллюстрация свойств пространственно-временной  инверсии координат для полного набора диполей: электрического, тороидального электрического, магнитного и тороидального магнитного.

There is a common belief, seemingly relying on seminal textbook of Landau and Lifshitz, that there is impossible to achieve magnetic responses at high, e.g. optical frequencies. However, it was recently shown, that multipole moments in particles made of high refractive index materials, e.g. silicon or germanium, could indeed exhibit magnetic properties. This discovery started the era of ‘All-dielectric Nanophotonics’, having the studies of novel types of light-matter interactions, light harvesting and concentration, novel type of magnetic metasurfaces, detection of magnetic transitions in atoms, and others as primary objectives. 

         Our group investigates all-dielectric systems by applying approaches of configuring multipole spectrum of complex geometries. Effects of induced bi-anisotropy, enhancement of magnetic moments, and harvesting of magnetic fields and their concentration. Those basic building blocks are aimed to be employed for large scale metasurfaces for photo-voltaic applications.

          Opto-mechanical tools could also contribute to development of all-dielectric devices. Multipole moments in particles could be utilized for directional scattering and, as the result, tailor characteristics of mechanical forces. For example, an interplay between electric and magnetic dipolar responses could lead to a unique beaming of scattered radiation. This additional flexibility in control of macroscopic structural responses was shown to enable above mentioned ‘tractor beams’, side control motion, levitation and others.   

This block is broken or missing. You may be missing content or you might need to enable the original module.

Staff

Иллюстрация свойств пространственно-временной  инверсии координат для полного набора диполей: электрического, тороидального электрического, магнитного и тороидального магнитного.

Publications

2019

36.
K. Hadi
Baryshnikova Kseniia
Sayanskiy Andrey
Kapitanova Polina
Terekhov Pavel
Karabchevsky Alina
Evlyukhin Andrei
Shalin Alexander
  , vol.
122
, 2019
[DOI:
10.1103/physrevlett.122.193905
] [IF:
8.462
, SJR:
3.560
]
35.
Novitsky Denis
Shalin Alexander
Novitsky Andrey
, vol.
99
, 2019
[DOI:
10.1103/physreva.99.043812
] [IF:
2.925
, SJR:
1.281
]
34.
Terekhov Pavel
Shamkhi H. K.
Gurvitz Egor
Baryshnikova Kseniia
Evlyukhin Andrei
Shalin Alexander
Karabchevsky A.
, vol.
27
, pp.
10924
, 2019
[DOI:
10.1364/oe.27.010924
] [IF:
3.307
, SJR:
1.487
]
33.
Terekhov Pavel
Baryshnikova Kseniia
Greenberg Yakov
Yuan Hsing Fu
Evlyukhin Andrey
Shalin Alexander
Karabchevsky Alina
, vol.
9
, pp.
3438
, 2019
[DOI:
10.1038/s41598-019-40226-0
] [IF:
4.259
, SJR:
1.625
]
32.
Terekhov Pavel
Babicheva Viktoriia
Baryshnikova Kseniia
Shalin Alexander
Karabchevsky Alina
Evlyukhin Andrey B.
, vol.
99
, pp.
45424
, 2019
[DOI:
10.1103/PhysRevB.99.045424
] [IF:
3.836
, SJR:
1.939
]
31.
Baryshnikova Kseniia
Filonov Dmitry
Simovski Constantin
Evlyukhin Andrey
Kadochkin Alexey
Nenasheva Elizaveta
Ginzburg Pavel
Shalin Alexander
, vol.
98
, pp.
165419
, 2019
[DOI:
10.1103/PhysRevB.98.165419
] [IF:
3.836
, SJR:
1.939
]
30.
The high-order toroidal moments and anapole states in all-dielectric photonics
Gurvitz Egor
Ladutenko Konstantin
Dergachev Pavel A.
Evlyukhin Andrey B.
Miroshnichenko A.E.
Shalin Alexander
  , vol.
13
, pp.
1800266
, 2019
[DOI:
10.1002/lpor.201800266
] [IF:
9.056
, SJR:
3.821
]
29.
Terekhov Pavel
Babicheva Viktoriia
Baryshnikova Kseniia
Shalin Alexander
Karabchevsky Alina
Evlyukhin Andrey B.
, vol.
10927
, 2019
[DOI:
10.1117/12.2506973
]
28.
Kucherik A.
Kutrovskaya S.
Osipov A.
Gerke M.
Chestnov I.
Arakelian S.
Shalin Alexander
Evlyukhin Andrei
Kavokin A.V.
, vol.
9
, pp.
338
, 2019
[DOI:
10.1038/s41598-018-36851-w
] [IF:
4.259
, SJR:
1.625
]
27.
Novitsky D.V.
Shalin Alexander
, vol.
531(2)
, pp.
1800405
, 2019
[DOI:
10.1002/andp.201800405
] [IF:
3.443
, SJR:
1.583
]

2018

26.
Terekhov Pavel
Baryshnikova Kseniia
Shalin Alexander
Karabchevsky A.
Evlyukhin Andrei
[DOI:
10.1109/PIERS.2017.8262140
]
25.
Terekhov Pavel
Baryshnikova Kseniia
Evlyukhin Andrei
Shalin Alexander
, vol.
929
, pp.
12065
, 2018
[DOI:
10.1088/1742-6596/929/1/012065
] [IF:
0.360
, SJR:
0.240
]
23.
Vestler D.
Shishkin Ivan
Gurvitz Egor
Nasir M.E.
Ben-Moshe A.
Slobozhanyuk Alexey
Krasavin A.V.
Levi-Belenkova T.
Shalin Alexander
Ginzburg Pavel
Markovich G.
Zayats A.V.
, 2018
22.
Terekhov Pavel
Baryshnikova Kseniia
Shalin Alexander
Karabchevsky A.
Evlyukhin Andrei
, vol.
42
, pp.
835-838
, 2018
[DOI:
10.1364/OL.42.000835
] [IF:
3.416
, SJR:
1.864
]
21.
Baryshnikova Kseniia
Denisultanov A.K.
Shalin Alexander
, vol.
1874
, pp.
30003
, 2018
[DOI:
10.1063/1.4998032
]
20.
Terekhov Pavel
Baryshnikova Kseniia
Artemyev Y.A.
Karabchevsky A.
Shalin Alexander
Evlyukhin Andrei
, vol.
96
, pp.
35443
, 2018
[DOI:
10.1103/PhysRevB.96.035443
] [IF:
3.836
, SJR:
1.939
]
19.
Terekhov Pavel
Baryshnikova Kseniia
Artemyev Y.A.
Shalin Alexander
Evlyukhin Andrei
Karabchevski A.
, pp.
310-315
, 2018
[DOI:
10.1109/DD.2017.8168045
]
18.
Baryshnikova Kseniia
Novitsky A.
Evlyukhin Andrei
Shalin Alexander
, vol.
34
, pp.
D36-D41
, 2018
[DOI:
https://doi.org/10.1364/JOSAB.34.000D36
] [IF:
1.806
, SJR:
0.894
]
17.
Terekhov Pavel
Baryshnikova Kseniia
Artemyev Y.A.
Karabchevsky A.
Shalin Alexander
Evlyukhin Andrei
, vol.
10528
, pp.
1052802
, 2018
[DOI:
10.1117/12.2289894
]
16.
Zhigunov Denis
Evlyukhin Andrey B.
Shalin Alexander
Zywietz Urs
Chichkov B.
, 2018
[DOI:
10.1021/acsphotonics.7b01275
] [IF:
6.880
, SJR:
3.516
]
15.
Novitsky A.
Shalin Alexander
Lavrinenko A.V.
, vol.
95
, pp.
53818
, 2018
[DOI:
10.1103/PhysRevA.95.053818
] [IF:
2.925
, SJR:
1.281
]
14.
Yue Liyang
Minin Oleg
Wang Zengbo
Monks James
Shalin Alexander
Minin Igor
, vol.
43
, pp.
771-774
, 2018
[DOI:
10.1364/OL.43.000771
] [IF:
3.416
, SJR:
1.864
]

2016

13.
Terekhov Pavel
Baryshnikova Kseniia
Shalin Alexander
Evlyukhin Andrey
Khromova Irina
, pp.
406-409
, 2016
[DOI:
10.1109/DD.2016.7756883
]
12.
Kozlov V.
Filonov Dmitry
Shalin Alexander
Steinberg Ben Z.
Ginzburg Pavel
, vol.
109
, pp.
203503
, 2016
[DOI:
10.1063/1.4967238
] [IF:
3.411
, SJR:
1.132
]
11.
Filonov Dmitry
Shalin Alexander
Ginzburg Pavel
, vol.
33
, pp.
1910-1916
, 2016
[DOI:
10.1364/JOSAA.33.001910
] [IF:
1.457
, SJR:
0.621
]
10.
Milichko Valentin
Shalin Alexander
Mukhin Ivan
Kovrov A.E.
Krasilin Andrey
Vinogradov A.V.
Simovski Constantin
, vol.
186
, pp.
727-772
, 2016
[DOI:
10.3367/UFNr.2016.02.037703
] [IF:
2.606
, SJR:
0.890
]
9.
Markovich Dmitry
Baryshnikova Kseniia
Shalin Alexander
Samusev Anton
Krasnok Alexander
Ginzburg Pavel
, vol.
6
, pp.
22546
, 2016
[DOI:
10.1038/srep22546
] [IF:
4.259
, SJR:
1.625
]

2015

8.
Baryshnikova Kseniia
Kadochkin Alexey
Shalin Alexander
, vol.
119
, pp.
367–380
, 2015
[DOI:
10.1134/S0030400X15090040
] [IF:
0.673
, SJR:
0.331
]
7.
Chebykin Alexander
Orlov Alexey
Shalin Alexander
Poddubny Alexander
, vol.
91
, pp.
205126
, 2015
[DOI:
10.1103/PhysRevB.91.205126
] [IF:
3.836
, SJR:
1.939
]
6.
Voroshilov Pavel
Simovski Constantin
Shalin Alexander
, vol.
117
, pp.
203101
, 2015
[DOI:
10.1063/1.4921440
] [IF:
2.185
, SJR:
0.632
]
5.
Baranov Dmitry
Dmitriev Pavel
Mukhin Ivan
Samusev Anton
Simovski Constantin
Shalin Alexander
, vol.
106
, pp.
171913
, 2015
[DOI:
10.1063/1.4919589
] [IF:
3.411
, SJR:
1.132
]
4.
Shalin Alexander
Ginzburg Pavel
Orlov Alexey
Zayats A.V.
, vol.
91
, pp.
125426
, 2015
[DOI:
10.1103/PhysRevB.91.125426
] [IF:
3.836
, SJR:
1.939
]
3.
Slobozhanyuk Alexey
Ginzburg Pavel
Powell David A.
Shalin Alexander
Krasavin Alexey V.
Wurtz Gregory_A.
Podolskiy Viktor A.
Zayats Anatoly
, vol.
92
, pp.
195127
, 2015
[DOI:
10.1103/PhysRevB.92.195127
] [IF:
3.836
, SJR:
1.939
]

2013

2.
Simovski Constantin
Shalin Alexander
Voroshilov Pavel
, vol.
114
, pp.
103104(1-6)
, 2013
[DOI:
10.1063/1.4820573
] [IF:
2.185
, SJR:
0.632
]
1.
Shalin Alexander
Sukhov S.V.
Krasnok Alexander
Nikitov S.A.
[DOI:
10.1016/j.photonics.2013.08.004
]