RFID (Radio Frequency Identification)

Radio Frequency Identification (RFID) is a method of using radio frequency electromagnetic waves to automatically identifying objects with special information holders, called RFID tags. Currently, radio-frequency identification is used in payment systems, biometric identification documents, logistics, pharmacy, and many other applications.

The main goal of our activity is to develop a new generation of effective and miniature RFID tags that surpass existing analogues. One of our directions is the development of a new type of RFID tags using miniature resonators based on dielectric materials with a high refractive index instead of metal resonant antennas, which, due to fundamental restrictions, cannot be much smaller than the wavelength of the incident radiation. Our goal is to bypass those limits by utilizing displacement currents in high-epsilon ceramics instead of conduction currents in metals. This significant and conceptual step will allow to develop RFID tags with reduced size, long reading distance, omnidirectional response in space, additional hardware data protection, and other unique characteristics, which make them attractive to many practical applications.
 

Staff

Publications

2022

17.
Dmitry Dobrykh
Dmitry Filonov
Pavel Ginzburg
[DOI:
10.1109/tap.2022.3195551
] [ IF:
4.824
, SJR:
2.128
]
16.
Dmitry Dobrykh
Pavel Ginzburg
Dmitry Filonov
, vol.
12
, 2022
[DOI:
10.1038/s41598-022-06061-6
] [ IF:
4.997
, SJR:
1.005
]

2021

15.
Mikhail Odit
Dmitry Dobrykh
Anna Mikhailovskaya
Pavel Ginzburg
Dmitry Filonov
, vol.
2015
, pp.
012073
, 2021
[DOI:
10.1088/1742-6596/2015/1/012073
] [ SJR:
0.210
]
14.
Anna Mikhailovskaya
Dmitry Dobrykh
Dmitry Filonov
Pavel Ginzburg
, vol.
2015
, pp.
012092
, 2021
[DOI:
10.1088/1742-6596/2015/1/012092
] [ SJR:
0.210
]
13.
Dmitry Dobrykh
Anna Mikhailovskaya
Dmitry Filonov
Pavel Ginzburg
, vol.
2015
, pp.
012136
, 2021
[DOI:
10.1088/1742-6596/2015/1/012136
] [ SJR:
0.210
]
12.
Anna Mikhailovskaya
Dmitry Dobrykh
Dmitry Filonov
Pavel Ginzburg
  , vol.
0
, 2021
[DOI:
10.1515/nanoph-2021-0394
] [ IF:
7.923
, SJR:
2.124
]
11.
, vol.
119
, pp.
193504
, 2021
[DOI:
10.1063/5.0064480
] [ IF:
3.971
, SJR:
1.025
, NI:
0,33
]
10.
Dmitry Dobrykh
Dmitry Filonov
Pavel Ginzburg
[DOI:
10.1109/tap.2021.3118846
] [ IF:
4.824
, SJR:
2.128
]
9.
Mikhail Odit
Dmitry Dobrykh
Anna Mikhailovskaya
Pavel Ginzburg
Dmitry Filonov
, vol.
16
, 2021
[DOI:
10.1103/physrevapplied.16.039901
] [ IF:
4.931
, SJR:
1.534
]
8.
Anna Mikhailovskaya
Dmitry Dobrykh
Dmitry Filonov
Pavel Ginzburg
, vol.
119
, pp.
033503
, 2021
[DOI:
10.1063/5.0054740
] [ IF:
3.971
, SJR:
1.025
]
6.
Mikhail Odit
Dmitry Dobrykh
Anna Mikhailovskaya
Pavel Ginzburg
Dmitry Filonov
, vol.
15
, 2021
[DOI:
10.1103/physrevapplied.15.024052
] [ IF:
4.931
, SJR:
1.534
]

2020

5.
Dmitry Filonov
Viktor Podolskiy
Pavel Ginzburg
, vol.
10
, 2020
[DOI:
10.1038/s41598-020-78981-0
] [ IF:
4.380
, SJR:
1.240
]
4.
Dmitry Dobrykh
Anna Mikhailovskaya
Dmitry Filonov
, vol.
2300
, pp.
020023
, 2020
[DOI:
10.1063/5.0031922
] [ SJR:
0.190
]
3.
Dmitry Dobrykh
Anna Mikhailovskaya
Dmitry Filonov
Pavel Ginzburg
[DOI:
10.1109/tap.2020.3037663
] [ IF:
4.388
, SJR:
1.652
]
2.
Dmitry Dobrykh
Anna Mikhailovskaya
Dmitry Filonov
Pavel Ginzburg
, vol.
102
, 2020
[DOI:
10.1103/physrevb.102.195129
] [ IF:
4.036
, SJR:
1.780
]
1.
Anna Mikhailovskaya
Dmitry Dobrykh
Dmitry Filonov
Pavel Ginzburg
[DOI:
10.1109/comcas44984.2019.8958040
]