Theoretical seminar | 18 December 2024

 
Andrey Tyshchenko
V.I. Il'ichev Pacific Oceanological Institute
Numerical modeling of broadband acoustic signals by mode parabolic equations
Abstract

Mode parabolic equations for broadband shallow water acoustic modelling are considered. Following the Split-step Pade method the high-order Pade approximation is applied to the pseudo-differential exponent operator resulting in a wide angle mode parabolic equation capable of accurately handling propagation angles up to nearly ±90 degrees relative to the main propagation direction. Fully discrete transparent boundary conditions and perfectly matched layers are considered for the artificial truncation of the computation area. A ray-based starter is introduced to provide adequate initial conditions for the wide angle parabolic equation. The numerical scheme is implemented in a newly developed open-source program AMPLE capable of modeling broadband sound propagation in complex three-dimensional waveguides. The numerical scheme and program are validated against other numerical methods on several modal problems. Three-dimensional modelling of underwater noise produced by a bulk carrier vessel and estimation of sound exposure due to seismic pulses is performed using the developed program.

https://doi.org/10.1121/10.0026238
https://doi.org/10.1016/j.jsv.2020.115526
https://doi.org/10.3390/jmse10010082
https://doi.org/10.1121/10.0034424
https://doi.org/10.1134/S1063771023600316