Dielectric nanostructures makes a new twist on light scattering phenomena. Subwavelength particles made of highdielectric materials exhibit very strong magentic response in visible range, which has been recently demonstrated experimentally. The lower losses, compared to plasmonic counterparts, allow to employ dielectric nanostructures for a variety of applications spanning from optical nanotantennas towards metamaterials. In particular, we demonstrated the suppression of the backward scattering and enhancement of the forward scattering due to superposition of the electric and magnetic dipole excitations of a single element. Moreover, due to othognality of optically induced diplole modes, the scattering pattern is polarization independent. It results in azimuthally symmetric unidirectional scattering which can be achieved even for a single element. Furthermore, directionality can be further enhanced by forming a chain of such elements. Although there is a tradeoff between energy confinement and directionality for different inter-particle distances, the properties of vanishing backward scattering and azimuthal symmetry are always preserved even for random ensembles of such elements. It makes them the perfect candidates for compact low loss optical nanoatennas.
Последние новости
-
-
Butterfly Effect: ITMO Researchers Create Colorful Perovskite Films for Optoelectronics
-
Scientific Show, Lectures, and Lab Tours: Recap of Physics Day 2025 at ITMO
-
ITMO-Developed Metasurface Makes Optical Chips 2x More Efficient
-
“Combing” Light: ITMO Researchers Find Reliable and Fast Way to Transmit Data in Space