Study

COURSE
Methods of Quantum Chemistry
2166
Radiofrequency systems and devices
2160 Ф
Applied and theoretical physics
2165
Semiconductor physics
2163
Quantum and hybrid materials

The course contains the basic concept and general methods of quantum-mechanical modeling of nanosystems. Practical lessons are devoted to the application of modern software packages, such as “PC GAMESS”, “GAUSSIAN”, “HYPER CHEM”, “QUANTUM-ESPRESSO”, “GPAW”, “MOPACK”, “MERCURY” to modeling of the optimum geometry, electronic structure and optical response of periodic and non-periodic systems.

In particular, the course can be divided into the following parts:

1. Modeling of many-electron atoms structure.

2. Modeling of molecular systems.

3. Realization of density functional theory for computation of optimal geometry and electronic structures of periodic and non-periodic systems.

4. Time-dependent density functional theory and their application to calculation of optical response of periodic and non-periodic systems.

5. Practical training on the basic techniques of the modern computer packages of quantum-mechanical modeling: “PC GAMESS”, “GAUSSIAN”, “HYPER CHEM”, “QUANTUM-ESPRESSO”, “GPAW”, “MOPACK”, “MERCURY”.

Language learning
English
Study program:  
Module:  
General module (NM)
Содержание программы

1. Introduction. Systems of independent particles: bosons and fermions, and their statistic.

2. Modeling of many-electron atoms structure.

3. Modeling of molecular systems

4. Realization of density functional theory for computation of optimal geometry and electronic structures of periodic and non-periodic systems.

5. Time-dependent density functional theory and their application to calculation of optical response of periodic and non-periodic systems.

6. Practical training on the basic techniques of the modern computer packages of quantum-mechanical modeling: “PC GAMESS”, “GAUSSIAN”, “HYPER CHEM”, “QUANTUM-ESPRESSO”, “GPAW”, “MOPACK”, “MERCURY”.

Список литературы

Basic

  1. K.I. Ramachandran, G. Deepa, K. Namboori. Computational Chemistry and Molecular Modeling. «Springer», 2008.
  2. И.М.Ибрагимов, А.Н. Ковшов, Ю.Ф. Назаров. Основы компьютерного моделирования наносистем. Лань. 2010.
  3. Л. Цюлике. Квантовая химия. «Мир», М. 1976.
  4. Р.Маттук, Фейнмановские диаграммы в проблеме многих тел. «Мир», М. 1969.
  5. С. Реймс, Теория многоэлектронных систем, «Мир», М. 1976.
  6. G.D. Mahan, Many Particle Physics, 2000.
  7. P. Coleman, Introduction to Many-Body Physics, Cambridge University Press, 2015

Additional

  1. I.Lindgren, J.Morrison. Atomic many-body theory. Springer. 1982.
  2. A.F.Fetter, J.D.Walecka. Quantum theory of many-particle systems. McGraw Hill Book Company. 1971. 
  3. Дж. Слэтер. Электронная структура молекул. «Мир», М. 1965 г. 
  4. H. Bruus, K. Flensberg, Many-body quantum theory in condensed matter physics, 2002 
  5. Д.Пайнс. Проблема многих тел. «Иностранная литература», М.1963. 
  6. Теория неоднородного электронного газа. Под ред. С.Лундквиста и Н.Марча. «Мир», М. 1987. 
  7. Д.Таулес. Квантовая механика систем многих частиц. «Мир», М. 1975
Syllabus
Syllabus54.19 KB