Исследователи взяли тонкую перовскитную пленку, а сверху нанесли полимер. Затем с помощью литографии из этого полимера создали метаповерхность, которая представляет собой вытянутые параллелепипеды. Зачем? В будущем это может помочь создавать высокоэффективные визуализаторы ИК-излучения. Подробнее об исследовании и его перспективах ― в нашем материале.
Иллюстрация концепта усиления двухфотонной фотолюминесценции в метаповерхности из галогенидного перовскита. Источник: статья ученых в журнале Nano Letters / pubs.acs.org
Многофотонное поглощение и люминесценция — важные нелинейные процессы, которые используются для эффективного взаимодействия света с веществом. Резонансное усиление нелинейных процессов было продемонстрировано для многих наноструктур. Но считается, что все процессы высшего порядка всегда оказываются намного слабее соответствующих линейных процессов.
Группа ученых Нового физтеха ИТМО совместно с коллегами из Харбинского технологического университета и Австралийского национального университета смогла доказать, что двухфотонная люминесценция может быть вполне сопоставима с однофотонной.
«В исследовании удалось продемонстрировать, что метаповерхность на основе галогенидного перовскита может существенно усилить двухфотонное вынужденное излучение, порог которого становится сравним с порогом однофотонного процесса. Другими словами, изначально очень маловероятный процесс становится сопоставим с более вероятным процессом. Это стало возможным за счет подбора параметров геометрии метаповрехности, при которых у нас получилось значительно усилить электромагнитное поле возбуждающего излучения в пленке перовскита», — рассказывает Павел Тонкаев, один из авторов работы, аспирант Нового физтеха ИТМО.
Моделирование динамики свободных носителей и рекомбинации экситонов при нелинейном фотовозбуждении показывает, что этот эффект может быть связан с усилением локального поля в структурированных средах, значительным увеличением перекрытия мод и правилами отбора двухфотонного поглощения в перовскитах.
В дальнейшем это исследование поможет при создании визуализатора ИК-излучения. Например, такие устройства необходимы в оптических лабораториях и на производствах, где нужно работать с невидимыми глазу лазерными пучками.
«Инфракрасное излучение глаз не различает, а нашу разработку можно использовать для того, чтобы визуализировать ИК-излучение на основе двухфотонной люминесценции», — поясняет Павел Тонкаев.
Мария Осина
Журналист