Polarization conversion of light reflected from quantum wells governed by both magnetic field and light propagation direction is observed.We demonstrate that the polarization conversion is caused by the magnetospatial dispersion in quantum wells which manifests itself in the reflection coefficient contribution bilinear in the in-plane components of the magnetic field and the light wave vector. The magnetospatial dispersion is shown to arise due to structure inversion asymmetry of the quantum wells. The effect is resonantly enhanced in the vicinity of the
heavy-hole exciton. We show that microscopically the magnetospatial dispersion is caused by the mixing of heavy- and light-hole states in the quantum well due to both orbital effect of the magnetic field and the in-plane hole motion. The degree of the structure inversion asymmetry is determined for GaAs/AlGaAs and CdTe quantum wells.
515 room (Birzhevaya line, 14)
515 room (Birzhevaya line, 14)
Последние новости
-
-
Butterfly Effect: ITMO Researchers Create Colorful Perovskite Films for Optoelectronics
-
Scientific Show, Lectures, and Lab Tours: Recap of Physics Day 2025 at ITMO
-
ITMO-Developed Metasurface Makes Optical Chips 2x More Efficient
-
“Combing” Light: ITMO Researchers Find Reliable and Fast Way to Transmit Data in Space