1. Title

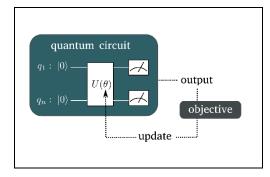
Quantum Machine Learning

- 2. Lecturer(s) Oleksandr Kyriienko
- 3. Assistance(s) Igor Lobanov
- 4. Course Language English
- 5. Credits and assessment form (exam, ungraded credit test, graded credit test) 3 ECTS, exam
- 6. Educational program and semester Master: Quantum Materials, 3 semester
- 7. Prerequisites (courses and topics, skills and abilities, as a prerequisite for studying the discipline specify the basic or advanced courses, whether they are present in the Department of Physics and Engineering programs, since under different names of courses there may be different content)

Quantum Mechanics. Optionally: Quantum Optics, Quantum Computing

8. Brief annotation (in simple and understandable language with the obligatory indication of the points below):

Course goal and main objectives:


This course aims to provide the state-of-the-art knowledge in the field of quantum computing and its application to quantum machine learning (ML). The goal is to introduce quantum computing, explain its difference from classical computing, and learn the way in which quantum algorithms in application to machine learning can be developed. First major objective is to familiarize students with paradigmatic algorithms of quantum computing, and explain the difference between fault-tolerant and near-term quantum computing. Next objective is to learn and understand modern variational quantum algorithms, and code them for quantum hardware and simulators. Finally, the-state-of-the-art quantum machine learning (QML) tools will be introduced, with objective to understand and develop extensions to existing QML protocols.

Expected learning outcomes:

After the course you will have a base in quantum computing, understanding state-of-the-art quantum protocols, and being able to implement it in code for quantum hardware and simulators. You will understand the modern quantum techniques and will learn how to develop variational quantum-classical algorithms. You will learn the goals of machine learning, and apply quantum computing to machine learning, developing quantum machine learning software.

Relevance, novelty, significance, and uniqueness:

The course targets understanding of the quantum computing approach to information processing and state-of-the-art of machine learning, so it combines the significance of quantum paradigm of computation with novel solutions inspired by the artificial intelligence. It has a unique and specialized curriculum that is based on the contemporary research, giving access to knowledge available only in best research centers. The course teaches the way computing will be performed tomorrow.

9. Course content

The course consists of the lecture series, where quantum computing and machine learning algorithms are described and explained. The large part of the course includes practical assignments (independent work), to be completed before each lecture, and discussed after lectures in the round table format. The course is also supplemented with weekly seminars where questions on practical assignments can be asked.

The structure of the course comprises of **three modules**:

- 1. Quantum computing
- 2. Variational quantum computing for modern devices
- 3. Machine learning and state-of-the-art quantum techniques

Nº	Section title	The main topics of the	Classes format	Estimated date
section		section, divided into		(if known)
		lectures, practices,		
		laboratory		
1	Introduction to Quantum	1 Bits and qubits. Dirac	Lecture	
	Computing	notation. Entanglement.		
		Quantum measurement.		
		Classical computing and		
		reversible computing.		
		Quantum gates.		
		2 Coding quantum gates	Independent	
		and checking identities	study/Seminars	
		in the programming		
		language of choice		
		3 Physical platforms for	Lecture	
		quantum computing.		
		Quantum software		
		infrastructure and		
		simulation tools.		
		QuASM. Quantum		
		packages from IBM		
		(qiskit), Rigetti (forest),		
		Google (circ), Microsoft		
		(Q#), and others.		
		4 Implementing a gate	Independent	
		sequence using one of	study/Seminars	
		existing quantum		
		packages		
		5 Quantum	Lecture	
		teleportation and Bells		
		states. Deutsch		
		algorithms and Deutsch-		
		Jozsa algorithm.		
		6 Quantum complexity.	Lecture	
		Simon's algorithm.		
		Quantum phase		
		estimation.		
		7 Factoring and Shor's	Lecture	
		algorithm. Quantum		
		search and Grover's		
		algorithm.		

		9 Quantum simulation	Locturo
		8 Quantum simulation	Lecture
		and linear combination	
		of unitaries. Quantum	
		computing for linear	
		algebra, HHL and	
		beyond.	
		9 Quantum linear	Lecture
		algebra (cont.) Future	
		algorithms for quantum	
		machine learning.	
		10 Project: software	Independent
		realization for a	study/Seminars
		quantum protocol of	
		choice	
2	Variational Quantum	11 Current hardware for	Lecture
	Algorithms for modern	quantum computing,	
	quantum devices	NISQ vs. FTQC protocols.	
		Hybrid quantum-	
		classical workflow.	
		Variational quantum	
		eigensolver (VQE).	
		12 VQE (cont.) Quantum	Lecture
		chemistry and material	
		science.	
		13 Coding VQE with	Independent
		chemically motivated	study/Seminars
		ansatz	
		14 Classical optimization	Lecture
		and gradient descent.	
		Variational ansatz.	
		15 Coding VQE with	Independent
		hardware efficient	study/Seminars
		ansatz	
		16 Initial state choice.	Lecture
		Measurement and	
		Hamiltonian averaging.	
		Barren plateaus.	
		Quantum state	
		comparator.	
		17 Variational quantum	Lecture
		algorithms for linear	
		algebra. Automatic	
		differentiation and	
		analytical gradients.	
		18 Quantum	Lecture
		approximate	
		optimization algorithm	
		and QAOA-type	
		quantum ansatz.	
		Embedding of NP-hard	
		problems and financial	
		, modelling. MaxCut and	
		unsupervised machine	
L			II

	learning (clustering).	
	19 Coding the	Independent
	embedding for NP-hard	study/Seminars
	problem and using	
	QAOA to solve it	
	20 Coding the VQE for	Independent
	chemistry/material	study/Seminars
	problem and	
	benchmarking	
3	21 Tasks of machine	Lecture
	learning. Supervised and	
	unsupervised learning.	
	Classical neural	
	networks. Quantum	
	neural networks and	
	variational circuits.	
	22 Amplitude encoding	Lecture
	and feature map	
	encoding. ML-inspired	
	quantum computing.	
	Quantum circuit	
	learning.	
	23 Coding data using	Independent
	amplitude and feature	study/Seminars
	maps.	
	24 Quantum clustering	Lecture
	and regression.	
	Quantum support vector	
	machines. Quantum	
	Principal Component	
	Analysis.	
	25 Generative	Lecture
	modelling. Quantum	
	GANs.	
	26 Variational Quantum	Lecture
	Autoencoder. Phase	
	transition detection and	
	convolutional neural	
	networks. Quantum	
	Deep Learning.	
	27 Open problems of	Lecture
	Quantum Machine	
	Learning (Input, Output,	
	Costing, and	
	Benchmarking	
	problems). Perspectives.	
	28 Coding one of the	Independent
	QML approaches as a	study/Seminars
	final project. Presenting code and benchmarking.	

The course is taught in the online format, with possibility to attend virtual lecture in the campus. More details can be found in shared *gitlab* group (open to students only) <u>https://gitlab.com/qml-msc-course-2020/quantum-machine-learning-course-2020</u>

10. Resources and references (required and recommended - be sure to add at least 2 links to an electronic source available at ITMO, as well as to an online course, if used)

1. Quantum Computation and Quantum Information: book / M. A. Nielsen and I. L. Chuang — Cambridge Univ. Press, 2010. — <u>http://mmrc.amss.cas.cn/tlb/201702/W020170224608149940643.pdf</u>

2. Introduction to Quantum Computing: lecture notes / John Watrous — Waterloo, 2006. — <u>https://cs.uwaterloo.ca/~watrous/LectureNotes/CPSC519.Winter2006/all.pdf</u>

3. Quantum machine learning: review / Jacob Biamonte et al. — Nature 549, 195–202, 2017. — <u>https://www.nature.com/articles/nature23474</u>

4. Parameterized quantum circuits as machine learning models: review / M. Benedetti, E. Lloyd, S. Sack, and M. Fiorentini. — Quantum Science and Technology 4, 043001, 2019. — <u>https://iopscience.iop.org/article/10.1088/2058-9565/ab4eb5</u>

11. Evaluation of course progress (grading policy) and examples of assignments

Choose the types of tasks from the list below or fill in your own in the table indicating the weight of the task in points and possible comments. The table must be filled in completely (comments if desired or if there are important details), and in the deadlines indicate the approximate expected dates or study weeks.

Форма	Assignment	Scor	Minimum threshold for	Deadli	Comments
контроля	s type	e %	attestation (grade E or credit)%	nes	
Current attestation for Module 1 (Monitoring of progress)	Mini- project	20	5	Mid- Oct 2020	Score includes homeworks, and presentation on the Module 1 mini-project
Current attestation for Module 2 (Monitoring of progress)	Mini- project	30	10	Nov 2020	Score includes homeworks, and presentation on the Module 2 mini-project
Mid-term attestation	Presentation of results in Modules 1 and 2 (counts towards total score for M1 and M2)				
Current attestation for Module 3 (Monitoring of progress)	Project	50	15	Dec 2020	Presentation on the Module 3 project and benchmarking
Admission to	Complete minimum 25% of homework				

attestation (if		
any)		
Attestation	Presentation of results in Module 3 and final project (counts towards total score for M3)	
Σ	100	

Tasks examples

- Homework
- Project
- Presentation

Scoring includes the implementation of proof-of-concept (minimal requirement), coding solutions, performance (advanced), presentation and questions answered.

12. Additional comments

<u>The information will become available only for those registered for the course:</u> details will be communicated at the official course page at <u>https://gitlab.com/qml-msc-course-2020/quantum-machine-learning-course-2020</u> and over emails with course lecturer and assistant.