1. Title

Introduction to cell biology

- 2. Lecturer(s) Vyacheslav Dyachuk
- 3. Assistance(s)
- 4. Course Language English
- 5. Credits and assessment form (exam, ungraded credit test, graded credit test) 2 ECTS, exam
- 6. Educational program and semester Master: Quantum and Hybrid Materials, 3 semester
- 7. Prerequisites (courses and topics, skills and abilities, as a prerequisite for studying the discipline specify the basic or advanced courses, whether they are present in the Department of Physics and Engineering programs, since under different names of courses there may be different content)

Since the course is a biological, it is a basic education level for understanding and conditions for attending the course. There is no need to attend additional courses before that.

8. Brief annotation (in simple and understandable language with the obligatory indication of the points below):

description of the course goal and main objectives

This educational course is an introduction to cell and molecular biology for physical specialties. **The aim** of the course is to obtain basic knowledge in the field of fundamental and applied cell and molecular biology for use by scientists of other specialties for use in their scientific field. his course consists of a special section of fundamental (theoretical) cell biology and molecular biology, followed by an applied (experimental) part. In the first part, students will get acquainted with modern data on the organization of model organisms, the structure of cells, organelles, their role and function, interactions between each other, as well as the development of organisms in normal and pathological conditions. The second part of the course will be devoted to the study of methods of molecular biology, genomics, transcriptomics and single cell technologies.

- description of expected learning outcomes (what the student will be able to do after studying the discipline)

As a result, students will gain basic knowledge in the field of cell and molecular biology, allowing them to navigate in this area and understand the basic principles of the structure and use of model objects in biology, medicine, physics, and chemistry. In addition, students will learn about new genomic technologies that are not yet available in Russia and can be used in various fields of science.

- (optional) the relevance of the course, novelty and significance, uniqueness, specialty and narrow profile or the course is basic and time-tested

9. Course content

No	Section title	The main topics of the	Classes format	Estimated date
section		section divided into	classes format	(if known)
Section		lectures practices		
		laboratory		
1	Fundamental principles of	1 General structure	lecture	1
1	cell structure	2 Organoids	lecture	1
		2 Main collular mothods	Locture	1,1
		3 Main cenular methods	Lecture+	1+1
			Seminar	
2	the Central dogma of	4. DNA	lecture	1
	molecular biology: DNA,	5 RNA	lecture	1
	RNA, protein.	6 Proteins	lecture	1
		7 Methods	lecture	1
		8 new experiments	lecture+	1+1
			Seminar	
3	model objects of cell and	Mice as a main object	lecture	1
	molecular biology	Danio rerio	lecture	1
		Human	lecture	1
		Invertebrates	lecture	1
4	The latest methods for	Immunocytochemistry	lecture	1
	studying the genome.	DNA investigations,	lecture	1
	transcriptome and	genomes		
	proteome	RNA	lecture	1
		investigations,		
		transcriptomes		
		Protein methods	lecture+	1+1
			Seminar	

The format of classes from the official curriculum is lectures, practices (seminars), students' independent work..

Indicate if it is possible to replace sections or topics with an online course (add link if possible). Clarify if you plan to replace existing lesson formats with an online course

10. Resources and references (required and recommended - be sure to add at least 2 links to an electronic source available at ITMO, as well as to an online course, if used)

Molecular Biology of the Cell. by Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter Walter. ISBN-10: 9780815344322

Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery. st Edition by Krishnarao Appasani (Editor), George M. Church. ISBN-10: 1107170370

Гены и геномы: В 2-х т. Автор: Сингер М., Берг П.

11. Evaluation of course progress (grading policy) and examples of assignments

Choose the types of tasks from the list below or fill in your own in the table indicating the weight of the task in points and possible comments. The table must be filled in completely (comments if desired or if there are important details), and in the deadlines indicate the approximate expected dates or study weeks.

Форма	Assignment	Scor	Minimum threshold for	Deadline	Comments
контроля	s type	e %	attestation (grade E or	S	
			credit)%		
Current	report at	10	Credit 10%	Seminar	Evaluation of
attestation	the			time	personal talk
during the	seminar				during
course					seminar and
(Monitoring of					answer a
progress)					question
Mid-term	report at	10	Credit 10%	Seminar	Evaluation of
attestation	the			time	personal talk
	seminar				during
					seminar and
					answer a
					question
Admission to	report at	10	Credit 10%	Seminar	Evaluation of
attestation (if	the			time	personal talk
any)	seminar				during
					seminar and
					answer a
					question
Attestation	examinatio	70	Credit 70%	by	the answers
	n			agreeme	to the
				nt	questions of
					examination
					papers and
					the practical
					task
Σ		100	100%		

Tasks examples

Indicate for each type of assignment examples that can be used in the course or are similar to actual assignments with decoding of the component parts according to the points from the table below. For example, if you have questions for a colloquium, exam or a set of topics for reports, then indicate the list. Supplement with an example or pattern for completing the assignment for those where a structured uniform design is important.

Indicate the requirements for completing assignments with justification, for which certain points are awarded, for which the number of points is reduced, which parts of the assignment are mandatory or additional (if there are or send examples of student work from past years to the dean's office)

An indicative list of possible assignments to complete and how they can be assessed

NՉ	Type of task	Component parts of the task	How could be used

Nº	Type of task	Component parts of the task	How could be used		
	Monitoring of progress / Mid-term				
	attestation				
1	Debate / discussion / round table	new methods for studying gene expression	Online forum, interactive voting, videoconference, etc.		
2	Case / situational (problem) task	Confocal microscopy or tomography?	Group analysis of a specific situation, individual-group work with cases and problematic tasks		
3	Colloquium	microscopic methods for studying living and non-living objects	Automated system of self- assessment and mutual assessment		
4	Report	atomic force microscopy in the study of single DNA and RNA molecules	Overall report, cross- report analysis		
5	Report	Biomineralization processes in invertebrates and their potential use as new materials for medicine	Overall report, cross- report analysis		
6	Report	Brainbow technology and genetic tracing	Overall report, cross- report analysis		
7	Report	RNA-velocity	Overall report, cross- report analysis		
8	Report	TALEN and Criprs-Cas9 technology	Overall report, cross- report analysis		
9	Report	Molecular machines for moving organelles in the cell	Overall report, cross- report analysis		
10	Presentation	Alzheimer's disease: methods of biology and physics for diagnosis and treatment	Video clip, stand, etc.		
11	Presentation	Disease Parkinsona: methods for detection and Biophysics a study of the causes and consequences	Video clip, stand, etc.		
12	Message	Biophysics of muscle contraction	Videoconference, webinar		
13	Message	single cell transcriptome analysis (on slides)	Videoconference, webinar		
14	Message	bulk and plate single cell transcriptome analysis	Videoconference, webinar		
15	Message	atomic force microscopy in the study of single DNA and RNA molecules	Videoconference, webinar		
16	Message	What is morpholino?	Videoconference, webinar		
		Attestation/ Session			
25	Passing ticket interview	 Description of application technology An indicative list of questions / tasks 	Interview with experts, cross-interview, written		

Nº	Type of task	Component parts of the task	How could be used
		for creditThe procedure for generating a ticket for offsetGrading scale and assessment criteria	response to ticket

12. Additional comments

<u>The information will become available only for those registered for the course:</u> indicate the format of communication with the teacher and a link to the materials for the course on <u>https://study.physics.itmo.ru</u>, google drive, <u>https://cloud.physics.itmo.ru/</u>