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1 Preliminaries

1.1 Basic equations
Time harmonic Maxwell’s equations with exp (−iωt) time dependence:

∇×E = iωµH
∇×H = J − iωεE (1)

Helmholtz equation either for the electric or magnetic field providing that the dielectric permittivity
and the magnetic permeability are constants:

∇×∇×H − ω2εµH = ∇× J (2)

∇×∇×E − ω2εµE = iωµJ (3)

Matching conditions and conditions at infinity define solutions of direct problems. Matching conditions
imply the continuity of the tangential electric and magnetic field components at material interfaces.
Conditions at infinity imply that the waves at large distances from scattering objects must be either
outgoing spherical or plane waves depending on a particular problem formulation.

1.2 Plane waves
The electromagnetic fields can be represented in terms of the vector and scalar potentials – A and ϕ.
Let they be related by the Lorentz gauge condition:

ϕ+
i

ωεbµb
∇A = 0

E = −∇ϕ+ iωA =
i

ωεbµb

(
∇∇A+ k2

bA
)

H =
1

µb
∇×A

(4)

Here constant material constants ε = εb, µ = µb describe an infinite homogeneous “basis” medium.
The Helmholtz equation for the vector potential appears to be

∆A+ k2
bA = −µ0J (5)

with k2
b = ω2εbµb. In the absence of sources J = 0 eigen solutions of the homogeneous isotropic

medium are plane waves:
A = A0 exp (ikr) , |k| = kb (6)

Going back to the electric and magentic fields we get

E =
i

ωεbµb

[
k2
bA0 − k (kA0)

]
exp (ikr)

H =
1

µb
k ×A0 exp (ikr)

(7)
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which are transverse in the isotropic medium. It is convenient to introduce the TE and TM polar-
izations relative to some Cartesian coordinate system (OXY Z). Correspoding unit vectors for these
polarizations will be

ê±e =
k± × êz
|k± × êz|

=
ky
κ
êx −

kx
κ
êy

ê±h =
k± × (k± × êz)
|k± × (k± × êz)|

= ±kxkz
κkb

êx ±
kykz
κkb

êy −
κ
kb
êz

(8)

where κ =
√
k2
x + k2

y, the wavevectors k± = (kx, ky,±kz) correspond to plane waves propagating

upwards and downwards with respect to axis Z, and the dispersion equation is kz =
√
k2
b − κ2,

<kz + =kz ≥ 0. Also, k± × ê±e = kbê
±
h , k± × ê±h = −kbê±e , and ê±e × ê±h = k±/kb.

Field decomposition in a homogeneous isotropic medium is a continuum of plane waves propagating
upwards and downwards with respect to the axis Z:(

E (r)
H (r)

)
=

∞̂

−∞

∞̂

−∞

dkxdky exp (ikxx+ ikyy)

{(
E+
κ

H+
κ

)
exp (ikzz) +

(
E−κ
H−κ

)
exp (−ikzz)

}
(9)

where κ2 = k2
x + k2

y, kz =
√
ω2εµ− κ2

x.

1.3 Power flow
Time averaged power density (observable quantity)

〈S〉 =
1

2
Re {E ×H∗} (10)

When there is a distinguished axis Z one can relate the plane wave power density 〈S〉z with TE and
TM wave amplitudes

〈S〉z =
1

2
<{E ×H∗}z =

1

2
<
{(

aeêe −
kb
ωεb

ahêh

)
×
(
a∗hêe +

kb
ωµb

a∗eêh

)}
z

=
1

2
<
{(

1

ωµb
|ae|2 k± +

1

ωεb
|ah|2 k±

)}
z

=
1

2
|ae|2<

(
±kz
ωµb

)
+

1

2
|ah|2<

(
±kz
ωεb

) (11)

1.4 Fresnel equations
Given a plane interface between two half-space homogeneous media with material parameters ε1,2,
µ12, the tangential components of the electric and magnetic fields should be continuous across this
interface. Suppose that axis Z is orthogonal to the interface, then

Ex,y (x, y,−0) = Ex,y (x, y,+0)
Hx,y (x, y,−0) = Hx,y (x, y,+0)

(12)

For a plane wave field decomposition:

E (x, y,+0) =
´∞
−∞
´∞
−∞ dkxdky exp (ikxx+ ikyy)

(
a+
e ê

+
e + a−e ê

−
e −

kb
ωεb

a+
h ê

+
h −

kb
ωεb

a−h ê
−
h

)
E (x, y,−0) =

´∞
−∞
´∞
−∞ dkxdky exp (ikxx+ ikyy)

(
b+e ê

+
e + b−e ê

−
e −

kb
ωεb

b+h ê
+
h −

kb
ωεb

b−h ê
−
h

)
H (x, y,+0) =

´∞
−∞
´∞
−∞ dkxdky exp (ikxx+ ikyy)

(
a+
h ê

+
e + a−h ê

−
e +

kb
ωµb

a+
e ê

+
h +

kb
ωµb

a−e ê
−
h

)
H (x, y,−0) =

´∞
−∞
´∞
−∞ dkxdky exp (ikxx+ ikyy)

(
b+h ê

+
e + b−h ê

−
e +

kb
ωµb

b+e ê
+
h +

kb
ωµb

b−e ê
−
h

)
(13)
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Then, usung the orthogonality of exponential factors we find that in-plane wavevector projections
preserve. Without loss of generality we can take ky = 0 so that the boundary conditions become

kz2
ε2

(
a+
h − a

−
h

)
=
kz1
ε1

(
b+h − b

−
h

)
a+
e + a−e = b+e + b−e

kz2
µ2

(a+
e − a−e ) =

kz1
µ1

(b+e − b−e )

a+
h + a−h = b+h + b−h

⇒

a+
e =

2µ2kz1
µ1kz2 + µ2kz1

b+e +
µ1kz2 − µ2kz1
µ1kz2 + µ2kz1

a−e

b−e =
µ2kz1 − µ1kz2
µ1kz2 + µ2kz1

b+e +
2µ1kz2

µ1kz2 + µ2kz1
a−e

a+
h =

2ε2kz1
ε1kz2 + ε2kz1

b+h +
ε1kz2 − ε2kz1
ε1kz2 + ε2kz1

a−h

b−h =
ε2kz1 − ε1kz2
ε1kz2 + ε2kz1

b+h +
2ε1kz2

ε1kz2 + ε2kz1
a−h

(14)

Coefficients behind the amplitudes in the right-hand side are nothing that the Fresnel reflection and
transmission coeffients:

re22 =
µ1kz2 − µ2kz1
µ1kz2 + µ2kz1

te21 =
2µ2kz1

µ1kz2 + µ2kz1
= 1− re22

re11 =
µ2kz1 − µ1kz2
µ1kz2 + µ2kz1

= −re22

te12 =
2µ1kz2

µ1kz2 + µ2kz1
= 1 + re22

(15)

2 S and T matrices

2.1 Definitions and properties
Reflection and transmission of plane wave at a planar interface is described in terms of the Fresnel re-
flection and transmission coefficients. For simulation of linear optical properties of multilayer structures
it is convenient to group these coefficient into so called T and S-matrices. Consider a planar structure
(one or several plane layers and interfaces) parallel to the XY of a Cartesian coordinate system (Fig.
...). Time-harmonic field of incoming and outgoing plane waves at boundaries of the structure z = z1,2

have the form of a superposition of plane waves propagating upwards and downwards with respect to
the axis Z:

F = a+ exp (ikxx+ ikzz) + a− exp (ikxx− ikzz) (16)

with kz =
√
ωεµ0 − k2

x providing that ky = 0. Then, the T and S-matrices of the structure are defined
as (

a+
2

a−2

)
=

(
T++ T+−

T−+ T−−

)(
a+

1

a−1

)
(17)

(
a−1
a+

2

)
=

(
S11 S12

S21 S22

)(
a+

1

a−2

)
(18)

Obviously, components of the S-matrix are nothing that the reflection and transmission coefficients,
Eq. (15):

S =

(
r11 t12

t21 r22

)
(19)

The T-matrix can be derived from the Eqs. (2), (3) and explicitly is

T =
1

t21

(
t12t21 − r11r22 r22

−r11 1

)
(20)

Given a structure surrounded by a homogeneous isotropic medium, the energy conservation law
brings: ∣∣a+

1

∣∣2 +
∣∣a−2 ∣∣2 =

∣∣a−1 ∣∣2 +
∣∣a+

2

∣∣2 ⇒ S†S = I (21)
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Figure 1: To the definition of scattering and transmission matrices.

i.e., in this case S is a unitary matrix. Upon changing the time t → −t (time reversal) we get
a+ → (a−)

∗, a− → (a+)
∗, so that(

a+
1

a−2

)∗
=

(
S11 S12

S21 S22

)(
a−1
a+

2

)∗
⇒
(
S11 S12

S21 S22

)−∗(
a+

1

a−2

)
=

(
a−1
a+

2

)
⇒ S = S−∗ (22)

When there are two adjacent structures with known matrices (4), (5) (Fig. (2)), S- and T-matrices
of the corresponding composite structure are found through compositions rules for these matrices. It
follows from the definition (2) that the composition of the T-matrices is simply the matrix multiplica-
tion

T = T (1)T (2) (23)

In case of S-matrices one can derive that

S11 = S
(1)
11 + S

(1)
12

[
1− S(2)

11 S
(1)
22

]−1

S
(2)
11 S

(1)
21

S12 = S
(1)
12

[
1− S(2)

11 S
(1)
22

]−1

S
(2)
12

S21 = S
(1)
21

[
1− S(2)

11 S
(1)
22

]−1

S
(2)
21

S22 = S
(2)
22 + S

(2)
21

[
1− S(2)

11 S
(1)
22

]−1

S
(1)
22 S

(2)
12

(24)

Figure 2: To the composition rules for S- and T-matrices

To simulate reflection and transmission of a plane wave through a medium with continuously varying
refractive index n (z), the function n (z) can be approximated by a piecewise continuous function as
Fig. 3 shows. Such function corresponds to a multilayer structure which reflection and transmission
coefficients can be attained by successive composition of corresponding matrices of interfaces and
homogeneous layers. Interface matrices are written directly as (4) and (5) when r and t mean the
Fresnel coefficients. Homogeneous layer matrices should only add a phase difference to the complex
wave amplitudes, and write

SL =

(
0 exp (ikzh)

exp (ikzh) 0

)
(25)

TL =

(
exp (ikzh) 0

0 exp (−ikzh)

)
(26)

Due to the presence of the negative sign exponent in (9) multiplication of the T-matrix become nu-
merically unstable for evanescent waves which have pure imaginary kz, and using S-matrices in such
situations is preferable.
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Figure 3: Approximation of a medium with continuously varying refractive index n (z) by a set homo-
geneous plane layers with constant permittivity.

2.2 Fabry-Perot resonator
An ideal Fabry-Perot resonator is a plane parallel plate. Once a monochromatic beam is incident on
this plate, the transmitted wave is a sum of all waves reflected inside the resonator:

at = ainc
(
t12t21e

ikzh + t12r22r22e
3ikzht21 + t12r22r22r22r22t21e

5ikzh + . . .
)

=
t12t21e

ikzh

1− r2
22e

2ikzh
(27)

Instead we can use the S-matrix formalism. Consider a slab (parallel plate) in the region −h/2 ≤ z ≤
h/2. S-matrix of the lower interface

SL =

(
−rL 1 + rL

1− rL rL

)
(28)

S-matrix of the lower interface and the homogeneous slab is

S =

(
−rL (1 + rL) exp (ikzh)

(1− rL) exp (ikzh) rL exp (2ikzh)

)
(29)

S-matrix of the upper interface is

SU =

(
rU 1− rU

1 + rU −rU

)
(30)

Thus, the S-matrix of the whole slab is

Sslab =

 rU −
(
1− r2

U

)
rL exp (2ikzh)

1− rUrL exp (2ikzh)

(1 + rL) (1− rU ) exp (ikzh)

1− rUrL exp (2ikzh)
(1− rL) (1 + rU ) exp (ikzh)

1− rUrL exp (2ikzh)
rL −

(
1− r2

L

)
rU exp (2ikzh)

1− rUrL exp (2ikzh)

 (31)

If rL = rU = r22

Sslab =

 r22
1− exp (2ikzh)

1− r2
22 exp (2ikzh)

(
1− r2

22

)
exp (ikzh)

1− r2
22 exp (2ikzh)(

1− r2
22

)
exp (ikzh)

1− r2
22 exp (2ikzh)

r22
1− exp (2ikzh)

1− r2
22 exp (2ikzh)

 (32)

In case of propagating wave r22is purely real, and the power transmission coefficient

T ∼

∣∣∣∣∣
(
1− r2

22

)
exp (ikzh)

1− r2
22 exp (2ikzh)

∣∣∣∣∣
2

=
(1−R22)

2

1− 2R22 cos (2kzh) +R2
22

=
(1−R22)

2

(1−R22)
2

+ 4R22 sin2 (kzh)
(33)

where R22 = r2
22. A typical dependence of T (λ) is a periodic set of maxima correspoding to points

kzh = πk. The quality factor is

Q =
ω

δω1/2
=

2nh

λ

π
√
R

1−R
(34)
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2.3 Planar waveguide
Consider guided modes of a homogeneous slab. They can be derived from different considerations.
First, it is the phase-matching condition based on the geometric optical interpretation:

2kzh+ ϕ1 + ϕ2 = 2πk, k ∈ Z (35)

where h is the slab thickness, and ϕ1,2 are phases of the Fresnel reflection coefficients for waves reflected
at the slab plane interfaces. This equation holds both for the Fabry-Pero resonances and waveguide
modes, so in the case of the waveguide modes one should require the plane wave to be evanescent in
the media which surround the slab.

The second derivation is based on the plane wave solutions of the Maxwell’s equations. In case of
the TE polarization, Maxwell’s equations for the plane wave read:

−∂Ey
∂z

= iωµHx

∂Ey
∂x

= iωµHz

∂Hx

∂z
− ∂Hz

∂x
= −iωεEy

(36)

Inside the waveguide we search for a propagating solutions

Ey = exp (ikxx) [C1 sin (k2zz) + C2 cos (k2zz)] ; Hx = − 1

iωµ2

∂Ey
∂z

; Hz =
kx
ωµ2

Ey, |z| ≤
h

2
(37)

while outside – for evanescent solutions:

Ey = C3 exp (ikxx) exp

(
−κ1z

(
z − h

2

))
; Hx = − 1

iωµ1

∂Ey
∂z

; Hz =
kx
ωµ1

Ey, z >
h

2
(38)

Ey = C4 exp (ikxx) exp

(
κ1z

(
z +

h

2

))
; Hx = − 1

iωµ1

∂Ey
∂z

; Hz =
kx
ωµ1

Ey, z < −
h

2
(39)

where κ1z =
√
k2
x − ω2ε1µ1 = ik1z. The interface conditions write

C1 sin

(
k2z

h

2

)
+ C2 cos

(
k2z

h

2

)
= C3

−C1 sin

(
k2z

h

2

)
+ C2 cos

(
k2z

h

2

)
= C4

−k2z

µ2

[
C1 cos

(
k2z

h

2

)
− C2 sin

(
k2z

h

2

)]
=
κ1z

µ1
C3

−k2z

µ2

[
C1 cos

(
k2z

h

2

)
+ C2 sin

(
k2z

h

2

)]
= −κ1z

µ1
C4

(40)

It is easy to see that this system splits in two independent pairs:

2C1 sin

(
k2z

h

2

)
= C3 − C4

−2
µ1

µ2

k2z

κ1z
C1 cos

(
k2z

h

2

)
= C3 − C4

2C2 cos

(
k2z

h

2

)
= C3 + C4

2
µ1

µ2

k2z

κ1z
C2 sin

(
k2z

h

2

)
= C3 + C4

⇒
tan

(
k2z

h

2

)
= −µ1

µ2

k2z

κ1z

cot

(
k2z

h

2

)
=
µ1

µ2

k2z

κ1z

(41)

The latter equations are the dispersion equations for the even and odd modes.
The third derivation of the dispersion equation comes from the poles of the scattering matrix:

aout = Sainc ⇒ S−1aout = ainc ⇒ S−1aeig = 0⇒ 1

detS
= 0 (42)
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For the slab this condition means

1− r2
22 exp (2ikz2h) = 0 (43)

Take the square root:
µ1kz2 − iµ2κ1z

µ1kz2 + iµ2κ1z
exp (ikz2h) = ±1 (44)

where κ1z =
√
k2
x − ω2ε1µ1 = ik1z. Expanding the complex exponent into the sine and cosine func-

tions, and equalizing the real and imaginary parts brings

µ1kz2 cos (kz2h) + sin (kz2h)µ2κ1z = ±µ1kz2
−µ2κ1z cos (kz2h) + sin (kz2h)µ1kz2 = ±µ2κ1z

(45)

Using the trigonometric equalities for double argument it is straightforwardly to see, that these equa-
tions yield only two independent conditions:

sin

(
kz2h

2

)[
µ1kz2 sin

(
kz2h

2

)
− µ2κ1z cos

(
kz2h

2

)]
= 0

cos

(
kz2h

2

)[
µ1kz2 cos

(
kz2h

2

)
+ µ2κ1z sin

(
kz2h

2

)]
= 0

(46)

or
µ1kz2
µ2κ1z

= cot

(
kz2h

2

)
µ1kz2
µ2κ1z

= − tan

(
kz2h

2

) ⇒

µ1

µ2
kz2 tan

(
kz2h

2

)
=
√
ω2 (ε2µ2 − ε1µ1)− k2

z2

µ1

µ2
kz2 cot

(
kz2h

2

)
= −

√
ω2 (ε2µ2 − ε1µ1)− k2

z2

(47)

Figure 4: Graphical solution of the Eq. (47)

Discrete spectrum of a slab waveguide is a set of modes in the region ω√ε1µ1 < kx < ω
√
ε2µ2. At

leas one TE mode exists for any thickness. Cut-off frequency for the first TM mode is kz2h/2 = π/2,
kz2 = ωc

√
ε2µ2 − ε1µ1.

3 1D photonic crystals
1D photoinc crystal is an infinite periodic set of plane layers of different permittivity (and permeability).
Such structure admit an almost analytical treatment, so it is convenient to derive important properties
of photonic crystals by considering the 1D case.

In the following derivations we will use the Floquet-Bloch theorem: solutions of the wave equation
in a periodic potential with period Λ can be represented as products Φ (x, z) = ϕ (x, z) exp (ikz) where
ϕ (x, z) is the z-periodic function with period Λ, and k is the Bloch wavevector modulo.
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3.1 Dispersion
The homogeneous Helmholtz equation

∇× 1

ε
∇×H = ω2µ0H (48)

is an eigenvalue equation for each fixed Bloch wavenumber k. The solutions should also be eigenstates
of the translation operator – Bloch wavefunctions. The corresponding eigenvalues

Tz→z+nΛΦ (x, z) = Φ (x, z + nΛ) = exp (iknΛ) Φ (x, z) (49)

The eigenvalues are the same for any k + mG with G = 2π/Λ. This is called reciprocal lattice. The
eigenstate appears to be degenerate for the set of Bloch wavenumbers k+mG. Therefore, for a complete
description of wave dispersion in 1D photonic crystals it is sufficient to consider −G/2 ≤ k ≤ G/2
region only: ω (k) = ω (k +mG). This region is called the first Brillouen zone. Also in case of pure
dielectric materials form time-reversal symmetry ω (−k) = ω (k): since eigenvalues of an Hermitial
operator are real and positive

∇× 1

ε
∇×H∗ = (ω∗)

2
µ0H

∗ ⇒H∗ = h∗ (x, z) exp (−ikz)⇒ ω (−k) = ω (k) (50)

In the vicinity of k = 0 the dispersion is linear as the wavelentgh is much larger than the period
in the empty-lattice model. So the light propagates in some effective medium. At the edge of the
Brillouin zone two counter-propagating waves exp (±ikz) meet and form a standing wave. Thus, the
group velocity dω/dk ≈ 0.

Figure 5: Disperison of 1D PhC for wave propagation perpendicular to the layers. Blue line – weak
refractive index contrast; red line – high contrast.

3.2 1D PhC band diagram calculation example
Consider first a simple case case of wave propagation perpendicular to the layers of the 1D photonic
crystal, and apply the Fourier method to solve the wave equation. Fourier decomposition of the
periodic dielectric function:

ε (z) =

∞∑
n=−∞

εn exp
(

2πin
z

Λ

)
⇒ εn =

1

Λ

Λ̂

0

dzε (z) exp
(
−2πin

z

Λ

)
(51)

εn =


ε1
d1

Λ
+ ε2

d2

Λ
n = 0

(ε1 − ε2)
sin (πnd1/Λ)

πn
n 6= 0

(52)
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The field Ey in case of the TE polarization in accordance with the Bloch theorem can also be represented
as a series

Ex (z) =

∞∑
n=−∞

ϕn exp

[
i

(
k +

2πn

Λ

)
z

]
(53)

This field satisfies the wave equation

d2Ex (z)

dz2
+ ω2ε (z)µ0Ex (z) = 0 (54)

Substitute the Fourier decompositions:

−

[∑∞
n=−∞ ψn

(
k +

2πn

Λ

)2

exp

(
i

(
k +

2πn

Λ

)
z

)]
+ω2µ0

[∑∞
m=−∞ εm exp

(
2πim

z

Λ

)] [∑∞
p=−∞ ψp exp

(
i

(
k +

2πp

Λ

)
z

)]
= 0

(55)

Let us multiply both parts of the equation by exp

(
−i
(
k +

2πq

Λ

)
z

)
, and integrate over the period.

The first term is∑∞
n=−∞

(
k +

2πn

Λ

)2

ψn
´ Λ

0
dz exp

(
i

(
k +

2πn

Λ

)
z

)
exp

(
−i
(
k +

2πq

Λ

)
z

)
=
∑∞
n=−∞

(
k +

2πn

Λ

)2

ψn
´ Λ

0
dz exp

(
i
2π

Λ
(n− q) z

)
=
∑∞
n=−∞

(
k +

2πn

Λ

)2

ψnΛδn−q =

(
k +

2πq

Λ

)2

ψqΛ

(56)

The second term is

ω2µ0

∑∞
m=−∞

∑∞
p=−∞ εmψp

´ Λ

0
dz exp

(
i

(
k +

2πm

Λ
+

2πp

Λ

)
z

)
exp

(
−i
(
k +

2πq

Λ

)
z

)
= ω2µ0

∑∞
m=−∞

∑∞
p=−∞ εmψpΛδm+p−q = Λ

∑∞
p=−∞ εq−pψp

(57)

This is nothing that the convolution theorem for the Fourier series. Thus,(
k +

2πq

Λ

)2

ψq − ω2µ0

∞∑
m=−∞

εq−mψm = 0 (58)

This is the generalized eigenvalue equation. In the normalized form it writes(
kΛ

2π
+ q

)2

ψq =

(
k0Λ

2π

)2 ∞∑
m=−∞

εq−mψm (59)

Eigenfrequencies are found upon truncation of infinite series and solving a finite matrix equation.
Components εq−m constitute a matrix, which elements depends on the index difference only. Such
matrices are called Toeplitz matrices.

3.3 Modal solutions
To generalize the results of the previous section let us construct the complete modal basis for a
1D PhC with material parameters being periodic functions of the coordinate x: ε (z) = ε (z + nΛ),
µ (z) = µ (z + nΛ), n ∈ Z. Maxwell’s equations for the TE and TM polarizations split into two
independent sets:

−∂Ey
∂z

= iωµHx

∂Ey
∂x

= iωµHz

∂Hx

∂z
− ∂Hz

∂x
= −iωεEy

(60)
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∂Hy

∂z
= iωεEx

∂Hy

∂x
= −iωεEz

∂Ex
∂z
− ∂Ez

∂x
= iωµHy

(61)

Denote ηe (z) = µ (z), ηh (z) = ε (z). Due to the translation invariance in the layer plane one can
decompose Ey = ψe (z) exp (iβex) in the TE case, and Hy = ψh (z) exp

(
iβhx

)
in the TM case. This

result comes from the fact that a general solution appears to be separable:

∂

∂z

(
1

µ (z)

∂Ey
∂z

)
+

∂

∂x

(
1

µ (z)

∂Ey
∂x

)
+ ω2ε (z)Ey = 0⇒ Ey = ξ (x)ψ (z)⇒ (62)

⇒ 1

ξ (x)

d2ξ (x)

dx2
+
µ (z)

ψ (z)

d

dz

(
1

µ (z)

∂ψ (z)

∂z

)
+ ω2ε (z)µ (z) = 0 (63)

⇒


1

ξ (x)

d2ξ (x)

dx2
= −β2

µ (z)

ψ (z)

d

dz

(
1

µ (z)

∂ψ (z)

∂z

)
+ ω2ε (z)µ (z)− β2 = 0

⇒ ξ (x) ∼ exp (±iβx) (64)

The Maxwell’s equations yield an eigenvalue problem, which has the same form for both polariza-
tions:

η (z)
d

dz

(
1

η (z)

dψ (z)

dz

)
+ ω2ε (z)µ (z)ψ (z) = β2ψ (z) (65)

Denote the second order operator

Le,h = ηe,h (z)
d

dz

(
1

ηe,h (z)

d

dz

)
+ ω2ε (z)µ (z)⇒ Lψ (z) = β2ψ (z) (66)

In case of a pure dielectric material this operator is self-conjugate, having real eigenvalues and eigen
functions which form a complete orthonormal set

Lψm (z) = β2
mψm (z) (67)

1

Λ

Λ̂

0

ψm (z)ψn (z)

ωη (z)
dz = δmn (68)

In case of lossy materials one can also construct a complete set of solutions, and for this purpose
bi-orhogonal bases should be used.

In each layer material parameters are constant, and the differential equation becomes

d2ψ (z)

dz2
+ ω2ε1,2µ1,2ψ (z) = β2ψ (z) (69)

Solutions of this second order equation with constant coefficients are harmonic functions, so that the
modal solutions can be written generally as

ψm (x, z) = exp (iβmx)

{
a1m exp (iκ1z) + a2m exp (−iκ1z) 0 ≤ z ≤ d
b1m exp (iκ2z) + b2m exp (−iκ2z) d ≤ z ≤ Λ

(70)

with κ1,2 =
√
ω2ε1,2µ1,2 − β2. Second solution (magnetic field in the TE case and the electric field in

the TM case):

χm (z) = ∓ 1

iωη1,2

dψm (z)

dz
= ∓ exp (iβmx)


iκ1

iωη1
[a1m exp (iκ1z)− a2m exp (−iκ1z)] 0 ≤ z ≤ d

iκ2

iωη2
[b1m exp (iκ2z)− b2m exp (−iκ2z)] d ≤ z ≤ Λ

(71)
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where the sign ∓ corresponds to different polarizations in accordance with Maxwell’s equations. Con-
tinuity of the solutions at the interface z = 0 yield an interface T-matrix:

a1m + a2m = b1m + b2m
κ1

η1
(a1m − a2m) =

κ2

η2
(b1m − b2m)

⇒
(
a1m

a2m

)
= T

(
b1m
b2m

)
=

1

2

 1 +
η1

η2

κ2

κ1
1− η1

η2

κ2

κ1

1− η1

η2

κ2

κ1
1 +

η1

η2

κ2

κ1

( b1m
b2m

) (72)

Using this expression we can evaluate a T-matrix of the PhC period. In accordance with the Bloch
theorem for some Bloch wavenumber k0

TΛ =

(
exp (iκ2d2) 0

0 exp (−iκ2d2)

)
1

2

 1 +
η2

η1

κ1

κ2
1− η2

η1

κ1

κ2

1− η2

η1

κ1

κ2
1 +

η2

η1

κ1

κ2


×
(

exp (iκ1d1) 0
0 exp (−iκ1d1)

)
1

2

 1 +
η1

η2

κ2

κ1
1− η1

η2

κ2

κ1

1− η1

η2

κ2

κ1
1 +

η1

η2

κ2

κ1

 = exp (ik0Λ) I

(73)

Here d1 = d, d2 = Λ− d1. Performing multiplications one finds that

TΛ11 =
1

2
eiκ2d2

(
eiκ1d1 + e−iκ1d1

)
+

1

4

(
η2

η1

κ1

κ2
+
η1

η2

κ2

κ1

)
eiκ2d2

(
eiκ1d1 − e−iκ1d1

)
TΛ12 =

1

4

(
η2

η1

κ1

κ2
− η1

η2

κ2

κ1

)
eiκ2d2

(
eiκ1d1 − e−iκ1d1

)
TΛ21 = −1

4

(
η2

η1

κ1

κ2
− η1

η2

κ2

κ1

)
e−iκ2d2

(
eiκ1d1 − e−iκ1d1

)
TΛ22 =

1

2
e−iκ2d2

(
eiκ1d1 + e−iκ1d1

)
− 1

4

(
η2

η1

κ1

κ2
+
η1

η2

κ2

κ1

)
e−iκ2d2

(
eiκ1d1 − e−iκ1d1

)
(74)

The determinant of the [TΛ − exp (ik0Λ) I] should be zero. Using the Euler’s formula for complex
exponents one attains[

4eiκ2d2 cos (κ1d1) + 2i

(
η2

η1

κ1

κ2
+
η1

η2

κ2

κ1

)
eiκ2d2 sin (κ1d1)− 4eik0Λ

]
×

×
[
4e−iκ2d2 cos (κ1d1)− 2i

(
η2

η1

κ1

κ2
+
η1

η2

κ2

κ1

)
e−iκ2d2 sin (κ1d1)− 4eik0Λ

]
−

−4

(
η2

η1

κ1

κ2
− η1

η2

κ2

κ1

)2

sin (κ1d1) sin (κ1d1) = 0

(75)

where from

e2ik0Λ + 1 + eik0Λ

[(
η2

η1

κ1

κ2
+
η1

η2

κ2

κ1

)
sin (κ1d1) sin (κ1d1)− 2 cos (κ1d1) cos (κ1d1)

]
= 0 (76)

Both real and imaginary parts yield the same dispersion equation:

cos (k0Λ) = cos (κ2d2) cos (κ1d1)− 1

2

(
η2

η1

κ1

κ2
+
η1

η2

κ2

κ1

)
sin (κ1d1) sin (κ2d2) (77)

If k0 = 0 the dispersion equation splits into two equations for even and odd modes:

1 = cos (κ2d2) cos (κ1d1)− 1

2

(
η2

η1

κ1

κ2
+
η1

η2

κ2

κ1

)
sin (κ1d1) sin (κ2d2)⇒ (78)

⇒
sin2

(
κ1d1

2

)
cos2

(
κ2d2

2

)
+
η2

η1

κ1

κ2
sin

(
κ1d1

2

)
cos

(
κ1d1

2

)
sin

(
κ2d2

2

)
cos

(
κ2d2

2

)
+ cos2

(
κ1d1

2

)
sin2

(
κ2d2

2

)
+
η1

η2

κ2

κ1
sin

(
κ1d1

2

)
cos

(
κ1d1

2

)
sin

(
κ2d2

2

)
cos

(
κ2d2

2

)
= 0

⇒

(79)
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⇒

[
cos

(
κ1d1

2

)
sin

(
κ2d2

2

)
+
η2

η1

κ1

κ2
sin

(
κ1d1

2

)
cos

(
κ2d2

2

)]
×
[
cos

(
κ1d1

2

)
sin

(
κ2d2

2

)
+
η1

η2

κ2

κ1
sin

(
κ1d1

2

)
cos

(
κ2d2

2

)]
= 0

⇒ (80)

⇒

 cot

(
κ1d1

2

)
tan

(
κ2d2

2

)
= −η2

η1

κ1

κ2

cot

(
κ1d1

2

)
tan

(
κ2d2

2

)
= −η1

η2

κ2

κ1

(81)

Solution of Eq. (77) maybe treaky, though, in case of the TE polarization and pure dielectric structure
(consider ε2 > ε1) one can single out three regions: there are no solutions for β2 > ω2ε2µ0, there is at
least one solution in the region ω2ε1µ0 < β2 < ω2ε2µ0, and the right hand-part of Eq. (77) oscillates
with maxima ≥ 1 and minima ≤ −1 (see the figure).

Figure 6: Right-hand part of Eq. (77) for a dielectric photonic crystal in TE polarization.

In order to construct the modal field let us take the derived functions in the following form:

ψ (x, z) = exp (iβx)

{
a1 cos (κ1z) + a2 sin (κ1z) 0 ≤ z ≤ d
b1 cos (κ2z) + b2 sin (κ2z) d ≤ z ≤ Λ

(82)

χ (x, z) = ∓ exp (iβx)


κ1

iωη1
[−a1 sin (κ1x) + a2 cos (κ1z)] 0 ≤ z ≤ d

κ2

iωη2
[−b1 sin (κ2x) + b2 cos (κ2z)] d ≤ z ≤ Λ

(83)

and relate the amplitudes via the boundary and periodic conditions. To simplify this procedure, first,
let us neglect the periodic Bloch condition and assume either a1 = 1, a2 = 0 or a1 = 0, a2 = 1 (denote
the corresponding functions as ψ(1), χ(1), and ψ(2), χ(2)). In the first case the boundary conditions at
z = d1 yield

cos (κ1d1) = b
(1)
1 cos (κ2d1) + b

(1)
2 sin (κ2d1)

κ1

η1
sin (κ1d1) =

κ2

η2

[
b
(1)
1 sin (κ2d1)− b(1)

2 cos (κ2d1)
] (84)

⇒
b
(1)
1 = cos (κ1d1) cos (κ2d1) +

η2

η1

κ1

κ2
sin (κ1d1) sin (κ2d1)

b
(1)
2 = sin (κ2d1) cos (κ1d1)− η2

η1

κ1

κ2
sin (κ1d1) cos (κ2d1)

(85)

In the second case when a1 = 0:

b
(2)
1 = sin (κ1d1) cos (κ2d1)− η2

η1

κ1

κ2
cos (κ1d1) sin (κ2d1)

b
(2)
2 = sin (κ1d1) sin (κ2d1) +

η2

η1

κ1

κ2
cos (κ1d1) cos (κ2d1)

(86)
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So that

ψ(1) (z) = exp (iβx)

cos (κ1z) 0 ≤ z ≤ d
cos (κ1d1) cos (κ2 (z − d1))− η2

η1

κ1

κ2
sin (κ1d1) sin (κ2 (z − d1)) d ≤ z ≤ Λ

(87)

ψ(2) (z) = exp (iβx)

sin (κ1z) 0 ≤ z ≤ d
sin (κ1d1) cos (κ2 (z − d1)) +

η2

η1

κ1

κ2
cos (κ1d1) sin (κ2 (z − d1)) d ≤ z ≤ Λ

(88)

Now suppose that the full solution is a composition of the attained ψ(1), ψ(2) and χ(1), χ(2):

ψ (x, z) = C
[
ψ(1) (z) + αψ(2) (z)

]
exp (iβx)

χ (x, z) = C
[
χ(1) (z) + αχ(2) (z)

]
exp (iβx)

(89)

The periodic Bloch condition allows finding the constant α:

ψ (x,+0) = exp (ikx0Λ)ψ (x,Λ− 0)

⇒ α =
exp (−ikx0Λ)− ψ(1) (Λ)

ψ(2) (Λ)
=

exp (−ikx0Λ)− cos (κ1d1) cos (κ2d2) +
η2

η1

κ1

κ2
sin (κ1d1) sin (κ2d2)

sin (κ1d1) cos (κ2d2) +
η2

η1

κ1

κ2
cos (κ1d1) sin (κ2d2)

(90)
Normalization constant C is found from the orthogonality condition

1

Λ

´ Λ

0

ψ (z)ψ (z)

ωη (z)
dz = 1

⇒ C2 =
Λ

´ Λ

0

[
ψ(1) (z) + αψ(2) (z)

] [
ψ(1) (z) + αψ(2) (z)

]
ωη

dz

(91)

3.4 Effective medium approximations for 1D photonic crystals
Consider the dispersion equation in the limit kΛ→ 0, kx0 = 0.

cot

(
κ1d1

2

)
tan

(
κ2d2

2

)
= −η2

η1

κ1

κ2
(92)

For small arguments tanα ≈ α, hence,

κ2d2

κ1d1
= −η2

η1

κ1

κ2
⇒ d2

d1
κ2

2 = −η2

η1
κ2

1 ⇒ ω2 d2η1ε2µ2 + d1η2ε1µ1

d1η2 + d2η1
= β2 (93)

In case of the pure dielectric media and TE/TM polarizations we get

ω2 d2ε2 + d1ε1

d1 + d2
µ0 = (βe)

2 ⇒ εeeff =
d1ε1 + d2ε2

d1 + d2
(94)

ω2 d2ε1ε2 + d1ε2ε1

d1ε2 + d2ε1
µ0 =

(
βh
)2 ⇒ εheff =


d1

ε1
+
d2

ε2

d1 + d2


−1

(95)

Then, one can see that in the limit of the small period the photonic crystal behaves as a uniaxial
medium. Based on the S-matrix method an optical responce ofthe slab in such a case can be analyzed
via simplified equations (see the Appendix).
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4 1D photonic crystal slab
In the following methods the diffraction problem is solved in two steps. First the grating region
−h/2 < z < h/2 is considered as a composite medium – photonic crystal, and one calculates Fourier
decomposition of eigen waves in the corresponding infinite 1D photonic crystal. Then, owing these
eigen solutions of the Maxwell’s equations they should be stitched with the fields in the substrate
(z < −h/2) and in the cover (z > h/2). The fields in the substrate and in the cover are represented in
terms of sets of plane waves propagating upwards and downwards relative to axis Z.

The qualitative diespersion relation for the photonic crystal can be attined from the dispersion of a
homogeneous slab waveguide by imposing the periodicity condition iand considering the first Brillouen
zone, shematically shown in Figure 7.

Figure 7: Qualitative explanation of the dispersion in a PhC slab (from H. Kurt, et. al., JOSA B, 25,
C1 (2008))

4.1 True Modal Method
Consider a photonic crystal slab parallel to z = 0 plane, with axis X being the periodicity direction.
Owing to the modal decomposition for an infinite 1D photonic crystal, e.g., for the TE polarization

Ey =
∑
m

[
a+
m exp (iβmz) + a−m exp (−iβmz)

]
ψm (x) (96)

Hx = −
∑
m

βm
ωµ0

[
a+
m exp (iβmz)− a−m exp (−iβmz)

]
ψm (x) (97)

we can use the boundary conditions to relate the plane wave decomposition in the homogeneous space
which surrounds the slab with the modal decomposition inside the slab via reflection and transmission
matrices.

Let us start with calculating a scattering matrix of a single interface z = 0 between 1D PhC
and a homogeneous medium. Below the interface the field is expanded into the modal solutions with
coefficients a±m and the above – into the plane waves with coefficients b±n :{

Ey (−0) = Ey (+0)
Hy (−0) = Hy (+0)

⇒

⇒


∑
m (a+

m + a−m)ψm (x) =
∑
n (b+n + b−n ) exp (ikxnx)∑

m

βm
ωµ0

(a+
m − a−m)ψm (x) =

∑
n

kzn
ωµ0

(b+n − b−n ) exp (ikxnx)

(98)

Denote coefficient vectors a± = {a±m}, b± = {b±m}. Multiply the latter equations by ψ∗q (x), in-
tegrate along the period, and apply the orthogonality of modal functions in the TE polarization
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´ Λ

0
ψm (x)ψ∗n (x) dx = ωµ0Λδn−m:{

a+
m + a−m =

∑
n (b+n + b−n )Mmn

a+
m − a−m =

∑
nNmn (b+n − b−n )

⇒
{
a+ = 1

2 (M +N) b+ + 1
2 (M −N) b−

a− = 1
2 (M −N) b+ + 1

2 (M +N) b−
(99)

where the matrix elements Mmn = 1
ωµ0Λ

´ Λ

0
exp (ikxnx)ψ∗m (x) dx, Nmn = kzn

βm
Mmn. This is the T-

matrix relation. It can be transformed to an S-matrix relation:{
b+ = 2 (M +N)

−1
a+ − (M +N)

−1
(M −N) b−

a− = (M −N) (M +N)
−1
a+ +

[
1
2 (M +N)− 1

2 (M −N) (M +N)
−1

(M −N)
]
b−

(100)

or

S =

(
− (M +N)

−1
(M −N) 2 (M +N)

−1

1
2 (M +N)− 1

2 (M −N) (M +N)
−1

(M −N) (M −N) (M +N)
−1

)
(101)

The same steps can be used to derive a scattering matrix of a photonic crystal slab:

1. write down the field plane wave expansion in the half-infinite media above and below the slab,
and the modal expansion within the slab

2. apply the boundary conditions at the upper and lower interfaces of the slab (z = ±h/2)

3. express the amplitude vectors for outgoing plane waves above and below the slab via amplitude
vectors of incoming plane waves

4.2 Fourier modal method
The idea of the Fourier modal method (FMM) is just the same as in the modal method, but instead
of the true modal field solutions of the 1D photonic crystal one seeks for the eigen solutions in the
Fourier space. Consider a photonic crystal slab parallel to z = 0 plane, with axisX being the periodicity
direction. First, we start with an infinite photonic crystal, invoke the Bloch theorem, and decompose
the periodic part of the field into the Fourier series

Φ (x, z) = exp (ikx)ϕ (x, z) =
∑
m

ϕm (z) exp (ikxmx) (102)

where kxm = k0 + 2π
Λ m. Also, for the periodic permittivity ε (x) =

∑
m εm exp

(
im 2π

Λ x
)
. A special

attention should be payed to the Fourier decomposition of products Dx,z = εEx,z. It has to be taken
into account that since the function ε (x) is discontinuous, solutions to the diffraction problem lie in
the set of distributions (generalized functions). Due to the boundary conditions at vertical interfaces
separating different materials of the photonic crystal Ez is continuous along the X direction whereas
Ex is not. Formally, the electric displacement field should meet the equation ∇D = 0. However, a
derivative of a product of two discontinuous distributions with coincident points of discontinuities,
as εEx, does not exist. Therefore, one may expect that the Fourier decomposition of Dx = εEx
would yield a poor convergence to the method. To overcome this issue it was proposed to, first,
rewrite this equality as 1

εDx = Ex, second, perform the Fourier transform
∑
n (1/ε)mnDxn = Exm,

third, truncate the series to get finite vectors and matrices, and then express the required amplitude
vector Dx = J1/εK−1

Ex, where J1/εK−1 is inverse of the truncated Fourier matrix, and Dx = {Dxm},
Ex = {Exm}. This said, substitution of Fourier decomposed field and permittivity into Maxwell’s
equations (60) and (61) yields

− ∂
∂zEy (z) = iωµ0Hx (z)
iKEy (z) = iωµ0Hz (z)

∂
∂zHx (z)− iKHz (z) = −iω JεKEy (z)

(103)

for the TE polarization, and

∂
∂zHy (z) = iω J1/εK−1

Ex (z)
iKHy (z) = −iω JεKEz (z)

∂
∂zEx (z)− iKEz (z) = iωµ0Hy (z)

(104)
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for the TM polarization. The diagonal matrix K = {kxm}. After rearranging the terms one obtains
the corresponding differential equations for the Fourier components of the fields (the the TE and TM
polarization):

d2

∂z2
Ey (z) +

(
ω2µ0 JεK−K2

)
Ey (z) = 0 (105)

∂

∂z

(
Hy (z)
Ex (z)

)
= iω

(
0 J1/εK−1

µ0

(
I − 1

ω2µ0
K JεK−1

K
)

0

)(
Hy (z)
Ex (z)

)
(106)

Solutions of these differential equations can be searched in form ϕm (z) = ϕm exp (iβz). Denote
the field coefficient vectors with small letters e, and h. This yields the following matrix eigenvalue
problems:

β2ey =
(
ω2µ0 JεK−K2

)
ey = Meey (107)

and:

iβ

(
hy
ex

)
= iω

(
0 J1/εK−1

µ0

(
I − 1

ω2µ0
K JεK−1

K
)

0

)(
hy
ex

)
⇒

⇒ β2

(
hy
ex

)
= Mh

(
hy
ex

)
,

Mh = ω2µ0

 J1/εK−1
(
I − 1

ω2µ0
K JεK−1

K
)

0

0
(
I − 1

ω2µ0
K JεK−1

K
)

J1/εK−1


(108)

Numerical solution of these two eigenvalue problems yields vectors of propagation constants β =
{
βe,hm

}
and corresponding eigenvectors ey, and hy, ex.

Analogously to the true modal method, at the second step one has to apply the boundary conditions
at the slab interfaces z = ±d/2 on the continuity of the tangential field components

Ex,y
(
z = ±d2 − 0

)
= Ex,y

(
z = ±d2 + 0

)
Hx,y

(
z = ±d2 − 0

)
= Hx,y

(
z = ±d2 + 0

) (109)

The general field decomposition for the periodic problem under consideration in a homogeneous
isotropic medium is (compare with Eq. (13))

E (x, y, z) =
∑
m exp (ikxmx)


(
ae+m ê

e+
m −

k

ωε
ah+
m êh+

m

)
exp (ikzmz)

+

(
ae−m ê

e−
m −

k

ωε
ah−m êh−m

)
exp (−ikzmz)


H (x, y, z) =

∑
m exp (ikxmx)


(
ah+
m êe+m +

k

ωµ
ae+m ê

h+
m

)
exp (ikzmz)

+

(
ah−m êe−m +

k

ωµ
ae−m ê

h−
m

)
exp (−ikzmz)


(110)

Consider for simplicity the TE polarization (treatment of the TM case is quite similar). The explicit
decomposition of the field in the lower half-space (with ε = ε1, and k

(1)
zm =

√
ω2ε1µ0 − k2

xm) when
z ≤ h/2 is

(
Ey
Hx

)
=
∑
m

exp (ikxmx)

 ae+m
k

(1)
zm

ωµ0
ae+m

 exp

[
ik(1)
zm

(
z +

d

2

)]
+

 ae−m

−k
(1)
zm

ωµ0
ae−m

 exp

[
−ik(1)

zm

(
z +

d

2

)]
(111)
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Here we used explicit components of the polarization unit vectors given by Eq. (8). Analogously, for
the upper homogeneous medium (with ε = ε2, and k

(2)
zm =

√
ω2ε2µ0 − k2

xm), z ≥ h/2:

(
Ey
Hx

)
=
∑
m

exp (ikxmx)

 be+m
k

(2)
zm

ωµ0
be+m

 exp

[
ik(2)
zm

(
z − d

2

)]
+

 be−m

−k
(2)
zm

ωµ0
be−m

 exp

[
−ik(2)

zm

(
z − d

2

)]
(112)

Within the slab the modal decomposition writes(
Ey
Hx

)
=
∑
m

exp (ikxmx)
∑
q

[
c+q exp (iβqz) + c−q exp (−iβqz)

]( eyqm
hxqm

)
(113)

Then, the interface conditions (109) yield (here one shoud use the orthogonality of factors exp (ikxmx)): 1 1

k
(1)
zm

ωµ0
−k

(1)
zm

ωµ0

( ae+m
ae−m

)
=
∑
q

(
eyqm eyqm
hxqm hxqm

)(
exp

(
−iβq d2

)
0

0 exp
(
iβq

d
2

) )( c+q
c−q

)
(114)

 1 1

k
(2)
zm

ωµ0
−k

(2)
zm

ωµ0

( be+m
be−m

)
=
∑
q

(
eyqm eyqm
hxqm hxqm

)(
exp

(
iβq

d
2

)
0

0 exp
(
−iβq d2

) )( c+q
c−q

)
(115)

The matrices in the left-had parts can be inverted, and the equations can be rearranged to give(
ae+m
be−m

)
=

1

2

(
1 ωµ0/k

(1)
zm

1 −ωµ0/k
(2)
zm

)∑
q exp

(
−iβq d2

)( eyqm 0
0 hxqm

)(
1 exp (iβqd)

exp (iβqd) 1

)(
c+q
c−q

)
(
ae−m
be+m

)
=

1

2

(
1 −ωµ0/k

(1)
zm

1 ωµ0/k
(2)
zm

)∑
q exp

(
−iβq d2

)( hyqm 0
0 exqm

)(
1 exp (iβqd)

exp (iβqd) 1

)(
c+q
c−q

)
(116)

In the matrix-vector form they give the S-matrix(
ae+

be−

)
= Qe

(
c+

c−

)
(
ae−

be+

)
= Re

(
c+

c−

) ⇒
(
ae−

be+

)
= Re (Qe)

−1

(
ae+

be−

)
= Se

(
ae+

be−

)
(117)

4.3 Emission from 1D photonic crystal
To describe luminescence in a complex structure one can use the FMM together with the reciprocity
conditions. We start with deriving the reciprocity theorem for time-harmonic Maxwell’s equations

∇×E = iωB
∇×H = J − iωD (118)

with linear relations
D = εE
B = µH

(119)

defined by symmetric tensors. Consider two different monochromatic sources having equal frequencies
ω: J1,2.

∇×E1 = iωB1

∇×H1 = J1 − iωD1

∣∣∣∣ ·H2

·E2
⇒ H2 · ∇ ×E1 = iωH2 ·B1

E2 · ∇ ×H1 = E2 · J1 − iωE2 ·D1
(120)

∇×E2 = iωB2

∇×H2 = J2 − iωD2

∣∣∣∣ · (−H1)
· (−E1)

⇒ −H1 · ∇ ×E2 = −iωH1 ·B2

−E1 · ∇ ×H2 = −E1 · J2 + iωE1 ·D2
(121)
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Sum up all the equations:

H2 · ∇ ×E1 −H1 · ∇ ×E2 +E2 · ∇ ×H1 −E1 · ∇ ×H2 = E2 · J1 −E1 · J2 (122)

Where we used the fact that

H2 ·B1 = H2αµαβH1β = H2αµβαH1β = H1 ·B2

E2 ·D1 = E1 ·D2
(123)

Then, apply ∇ (A×B) = B · ∇ ×A−A · ∇ ×B:

∇ [(E1 ×H2) + (H1 ×E2)] = E2 · J1 −E1 · J2 (124)

Integrate over the total space:
ˆ
d3r∇ [(E1 ×H2) + (H1 ×E2)] =

ˆ
d3r (E2 · J1 −E1 · J2) (125)

ˆ
d3r∇ [(E1 ×H2) + (H1 ×E2)] =

ˆ

∞

dσ · [(E1 ×H2) + (H1 ×E2)] = 0 (126)

Thus, ˆ
d3r (E2 · J1) =

ˆ
d3r (E1 · J2) (127)

Now consider a PhC slab with local incoherent sources. To find the field they emit at infinity at
a given direction (θ0, ϕ0) we can apply the reciprocity theorem, where J1 ≡ Jloc (r) is a local dipole
source, E1 = Eemi (θ0, ϕ0) = Eemi exp (ik0r) – the (unknown) plane wave field emitted by this source
at infinity, J2 ≡ Jext (θ0, ϕ0) is a dipole source at infinity, and E2 = Eexc (r) is the local field excited
by an incident plane wave. The monochromatic local dipole source

Jloc (r) = −iωplocδ (r − rd) (128)

Then,

−iω
ˆ
d3rEexc (r)pdδ (r − rd) =

ˆ
d3rEemi exp (ikincr)Jext (θ0, ϕ0) (129)

Suppose the external source is also a dipole source of unit amplitude |pexc| = 1, where pexc ⊥ k0,
Eexc||pexc:

ploc ·Eexc (rd) = pexc ·Eemi exp (ik0r∞) (130)∣∣∣ETE,TM
emi

∣∣∣2 =
∣∣ploc ·ETE,TM

exc (rd)
∣∣2 (131)

Power flow of the TE and TM polarizations:

Pz (ploc, rd) =
1

2

[∣∣ETE
emi

∣∣2< (k0) +
∣∣ETM

emi

∣∣2<(k0

εb

)]
(132)

Averaging over dipole orientations:

Pz (ploc, rd) =
1

2No

No∑
k=1

[∣∣∣p(k)
loc ·E

TE,TM
exc (rd)

∣∣∣2< (k0) +
∣∣∣p(k)
loc ·E

TE,TM
exc (rd)

∣∣∣2<(k0

εb

)]
(133)

or

Pz (ploc, rd) =
1

8π

ˆ
dΩd

[∣∣ploc ·ETE,TM
exc (rd)

∣∣2< (k0) +
∣∣ploc ·ETE,TM

exc (rd)
∣∣2<(k0

εb

)]
(134)
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5 Resonant effects in 1D photonic crystal slabs
Consider calculation of the reflectance spectrum from a 1D PhC subwavelength dielectric slab by the
FMM (slab parameters are h = 0.255µm, Λ = 1.15µm, d/Λ = 0.4, ε1 = 3.172, ε2 = 1) for θ0 = 0◦

and θ0 = 1◦ angles of incidence [...]. The result is given in figure ... . One can distinguish a sharp
asymmetric resonance at 1◦ angle of incidence which cannot be found at normal incidence (when
kx0 = 0 – at Γ point). This resonance is due to an excitation of the slab mode, which has an odd
(asymmetric) field profie. Since the field of the incident plane wave at kx0 = 0 is purely symmetric, it
cannot be coupled to this mode. At small angles the coupling is very small, so the quality factor of
the resonance is very high.

5.1 Symmetric and asymmetric resonance shape
In this section consider simple resonant systems, which exhibit either symmetric or asymmetric reso-
nance lineshape. An example of a simple resonant system is a 1D oscillator, which motion is governed
by the wave equation

d2x

dt2
+ 2γ

dx

dt
+ ω2

0x = f (135)

For the external harmonic force f = f0 exp (iωt) a general solution for sustained oscillations can be
searched in form x = C (ω) exp (iωt). Substitution into the wave equation yields

C (ω) =
f0

ω2
0 − ω2 + 2iωγ

⇒


|C (ω)| = f0√

(ω2
0 − ω2)

2
+ 4ω2γ2

argC (ω) = arctan

(
2ωγ

ω2 − ω2
0

) (136)

For sufficiently small losses in the vicinity of the resonance |ω − ω0| � ω0 the lineshape can be
approximated by the Lorentzian

|C (ω)| ≈ f0

2ωγ

[
1 +

1

2

(ω0 + ω)
2

(ω0 − ω)
2

4ω2γ2

] ≈ γf0

ω0

[
(ω − ω0)

2
+ 2γ2

] (137)

This lineshape has a symmetric profile, which is generally the case when an exciting field interacts with
a resonant system. Resonance position of the latter equation is determined by the poles of function
|C (ω)|:

(ω − ω0)
2

+ 2γ2 = 0⇒ ωres = ω0 ± i
√

2γ (138)

Here one should choose the sign +, which corresponds to the damping. The quality factor, which is
equal to the ratio between the stored and lost energy by one period of oscillations (or the relation of
the resonant frequency to the half-width of the resonance line) can be related to the imaginry part of
the resonance frequency:

Q =
Wstored

Wlost
=
ω0

2γ
∼ < (ωres)

= (ωres)
(139)

A model, which gives an asymmetric lineshape is more sophysticated. Let us consider two coupled
oscillators with an external force exciting one of them:

d2x1

dt2
+ 2γ1

dx1

dt
+ ω2

01x1 + vx2 = f0 exp (iωt)

d2x2

dt2
+ 2γ2

dx2

dt
+ ω2

02x2 + vx1 = 0
(140)

For simplicity suppose that ω01 ≈ ω02, γ2 = 0, and γ1, v � ω01. Then one can search for solutions
x1,2 = c1,2 exp (iωt). Substitution yields:{

c1
(
ω2

01 − ω2 + 2iγ1ω
)

+ vc2 = f0

vc1 + c2
(
ω2

02 − ω2
)

= 0
(141)
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In the absence of the external force one gets the dispersion equation(
ω2

01 − ω2 + 2iγ1ω
) (
ω2

02 − ω2
)
− v2 = 0 (142)

which solutions define the eigenfrequencies of the system. Solution of Eq. (141) is

c1 =
f0

(
ω2

02 − ω2
)

(ω2
01 − ω2 + 2iγ1ω) (ω2

02 − ω2)− v2

c2 = − vf0

(ω2
01 − ω2 + 2iγ1ω) (ω2

02 − ω2)− v2

(143)

For the first power coefficient in case ω ≈ ω02 (hence,
(
ω2

02 − ω2
)
≈ 2ω02 (ω02 − ω))

|c1|2 =
f2

0

(
ω2

02 − ω2
)2

[(ω2
01 − ω2) (ω2

02 − ω2)− v2]
2

+ 4γ2
1ω

2 (ω2
02 − ω2)

2

≈ 4f2
0ω

2
02 (ω02 − ω)

2

[2ω02 (ω2
01 − ω2

02) (ω02 − ω)− v2]
2

+ 16γ2
1ω

4
02 (ω02 − ω)

2
= |c01|2

(ε+ q)
2

ε2 + 1

(144)

with

ε =

(
ω2

01 − ω2
02

)2
+ 4γ2

1ω
2
02

v2γ1
(ω − ω02)− ω2

02 − ω2
01

2γ1ω02

q =
ω2

02 − ω2
01

2γ1ω02

|c01|2 =
f2

0

v4γ2
1

v4γ2
1[

(ω2
01 − ω2

02)
2

+ 4γ2
1ω

2
02

]
(145)

The asymmetry of the responce can be seen by taking ω = ω02 – in this case |c1| = 0. The latter of
Eq. (144) is a general form for the asymmetric Fano lineshape profile. If considering a particle having
two scattering chennels: one is directly to the continuum, and the second is to a bound state with a
further tunneling to the continuum, then, variable ε has the meaning of the energy, and the parameter
q characterizes the relation of the probabilitites for the paricle to scatter through each channel. In the
normalized form

σ =
1

q2 + 1

(ε+ q)
2

ε2 + 1
, σmax = 1 (146)

Figure 8: Fano formula lineshapes, Eq. (146). Red line – for q = 1, blue line – for q = 0, green line –
for q =∞.
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5.2 Calculation of zeros and poles
In physical problems the equation for eigenmodes or resonances

detS−1 = 0 (147)

can be a transcendental equation like in case of the slab waveguide, a polynomial equation like in
case of a simple resonator, a matrix equation, or even be defined by a numerical algorithm. There is
no universal method to solve it, so in each case one has to search for a most appropriate way. The
equation is equivalent to a search for poles of the scattering matrix.

In case when the dispersion relation is defined by a polynomial or transcendental function f (x)
one apply the Newton root-finging method: given an inital approximation x0 do until convergence:

xk+1 = xk −
f (xk)

f ′ (xk)
(148)

This is the consequence of the Taylor series decomposition:

0 ≈ f (xk + ∆x) = f (xk) + f ′ (xk) ∆x⇒ ∆x = xk+1 − xk = − f (xk)

f ′ (xk)
(149)

When function f is complex-valued one should take care when searching for all zeros since a set of
initial approximations which converge to a given root is a fractal set (called Newton bassin) (see Figure
9). Sometimes it is useful to search for roots with a higher order approximation, e.g., the third order
Halley method:

0 ≈ f (xk + ∆x) = f (xk) + f ′ (xk) ∆x+
1

2
f ′′ (xk) (∆x)

2

⇒ ∆x = − f
′ (xk)

f ′′ (xk)

(
1−

√
1− 2

f ′′ (xk) f (xk)

[f ′ (xk)]
2

)
≈ − f

′ (xk)

f ′′ (xk)

f ′′ (xk) f (xk)

[f ′ (xk)]
2 − 1

2

(
f ′′ (xk) f (xk)

[f ′ (xk)]
2

)2


= − f (xk)

f ′ (xk)

(
1 +

1

2

f ′′ (xk) f (xk)

[f ′ (xk)]
2

)
(150)

Figure 9: Newton bassin for a third order polynomial.

If one faces the matrix equation S−1a = 0, analogs for the Newton and Halley methods can
be derived. First, given an approximation for the root ωn, consider a decomposition of the inverse
scattering matrix aroun zero:

S−1 (ω) ≈ S−1 (ωn) + (ω − ωn)

[
dS−1

dω

]
ω=ωn

(151)

21



Then let us multiply this matrix equation by a scattered amplitude vector a, and evaluate the equality
in the pole:

0 = S−1 (ωp)a ≈ S−1 (ωn)a+ (ωp − ωn)

[
dS−1

dω

]
ω=ωn

a

⇒ (ωn − ωp)
[
dS−1

dω

]
ω=ωn

a ≈ S−1 (ωn)a
(152)

We attain the generalized eigenvalue problem, and once it is solved the minimal eigenvalue can be used
to get a new approximation ωn+1:

ωn+1 = ωn −min eig

(
S−1 (ωn) ,

[
dS−1

dω

]
ω=ωn

)
(153)

Usually this methods leads to a rapid loss of accuracy due to the inversion operation with the incresing
matrix dimension.

To avoid matrix inversion consider a resonant decomposition of the scattering matrix

S (ω) = A (ω) +
∑
m

Bm
ω − ωpm

(154)

with slowly varying matrix function A (ω), and pole amplitude matrices Bm. Since S−1 (ωpm)a =
0, then kerS−1 describes eigen fields, and ImBm = kerS−1. If rankBm = r, then there exists a
decomposition Bm = LmRm with Lm ⊂ Cn×r, Rm ⊂ Cr×n, so that

S (ω) = A (ω) +
∑
m

Lm
1

ω − ωpm
Rm = A (ω) + L (Iω − Ωp)

−1
R (155)

One can take the derivatives
S′ (ω) = −L (Iω − Ωp)

−2
R

S′′ (ω) = 2L (Iω − Ωp)
−3
R

(156)

When ω = ωn (some approximation of the pole), these are the equation for unknown diagonal matrix
Ωp. Consider a singular value decomposition of the second derivative:

S′′ (ω) = UΣV † (157)

with unitary matrices U and V (U†U = I, V †V = I) and the diagonal matrix of singular values
Σ ⊂ Cr×r,. Then, Σ = U†S′′ (ω)V , and{

U†S′ (ω)V = −U†L (Iω − Ωp)
−2
RV

Σ = 2U†L (Iω − Ωp)
−3
RV

⇒

 (Iω − Ωp)
−2

= −
(
U†L

)−1
U†S′ (ω)V (RV )

−1

(Iω − Ωp)
−3

=
1

2

(
U†L

)−1
Σ (RV )

−1

⇒ (Iω − Ωp) = (Iω − Ωp)
−2

(Iω − Ωp)
3

= −2
(
U†L

)−1
U†S′ (ω)V (RV )

−1
(RV ) Σ−1

(
U†L

)
= −2

(
U†L

)−1 (
U†S′ (ω)V Σ−1

) (
U†L

)
⇒ U†S′ (ω)V Σ−1 =

1

2

(
U†L

)
(Ωp − Iω)

(
U†L

)−1

(158)
The latter relation is an eigenvalue decomposition of the left hand part matrix. Thus,

Ωp − Iω = 2diageig
(
U†S′ (ω)V Σ−1

)
(159)

and the algorithm can be constructed as follows

ωn+1 = ωn + 2 min eig
(
U†S′ (ωn)V Σ−1

)
, S′′ (ωn) = UΣV † (160)

The derivatives can be calculated via the finite differences as

S′ (ωn) ≈ S (ωn + ∆ω)− S (ωn −∆ω)

2∆ω

S′′ (ωn) ≈ S (ωn + ∆ω)− 2S (ωn) + S (ωn −∆ω)

(∆ω)
2

(161)
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where the step ∆ω should be taken to be small enough to resolve the resonance. The S-matrix for
these resonant frequency search can be calculated, e.g., by the FMM or TMM described above.

In case there is only one resonance in the region of interest, rankB = r = 1, Σ has only one nonzero
element σ in the first row and the first column. Therefore,

S′′ (ω) = UΣV † = U1ΣV †1 ⇒

 S′′ (ω)U1 = σ
(
V †1 U1

)
U1

S′′† (ω)V1 = σ
(
U†1V1

)
V1

(162)

i.e., U1 is an eigenvector of S′′ (ω), and V1 is an eigenvector of S′′† (ω). Hence, σ = max eig (S′′ (ω)) /
(
V †1 U1

)
where max eig (S′′ (ω)) is the only nonzero eigenvalue of S′′ (ω). So,

S′′ (ω) = U1
max eig (S′′ (ω))(

V †1 U1

) V †1 (163)

Also U1 and V1 are also eigenvectors of S′, since

U†S′ (ω)V Σ−1 =
1

2

(
U†L

)
(ωp − ω)

(
U†L

)−1

⇒ S′ (ω) =
1

2
(ωp − ω)UΣV † = U1

max eig (S′ (ω))(
V †1 U1

) V †1
(164)

and

U†S′ (ω)V Σ−1 =
max eig (S′ (ω))(

V †1 U1

) U†U1V
†
1 V Σ−1 =

max eig (S′ (ω))(
V †1 U1

) 1

σ
=

max eig (S′ (ω))

max eig (S′′ (ω))
(165)

so the iteration algorithm reduces to

ωn+1 = ωn + 2
max eig (S′ (ωn))

max eig (S′′ (ωn))
(166)

5.3 Modal description of resonant reflection
If one calcultes the quality factors of the leaky mode resonance of a 1D photonic crystal slab, the
appear points with infinitely large quality factor (Fig. 10, 11). These are so called boud states in the
continuum (BIC). They are of two types. The first type states are due the symmetry mismatch at Γ
point, whereas the second type are due to the interference effects.

The appearence of the second type resonances can be qualitatively (and quantitatively also) ratio-
nalized by considering propagating Bloch modes in the slab. Bloch modes were derived above while
considering an infinite photonic crystal. For a rather small period there exists only one solution β2 > 0
of Eq. (77) which corresponds to a single propagating mode. Owing an interface with a homogeneous
medium this mode can be reflected and transmitted at this interface (Fig. 12). For larger period there
appear several modes (say, N modes). Let us denote their reflection coefficients at the slab interfaces
as rmn. Then the equation for the self-consistent modal amplitudes inside the slab is{

a+
m =

∑N
n=1 rmna

−
n exp (iβmh)

a−m =
∑N
n=1 rmna

+
n exp (iβmh)

(167)

Writing this equation in the form Ra = 0 yields the disperison equaion for the leaky modes detR = 0.
Transmitted wave amplitude for the leackage radiation is

bt =

N∑
m=1

tma
+
m exp (iβmh) (168)
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Within the single mode approximationN = 1, and the dispersion equation gives resonance condition

1− r2
11 exp (2iβ1h) = 0⇒ β1h+ arg r11 = πl (169)

This is similar to the Fabry-Perot resonator and a slab waveguide equation. Amplitude of the trans-
mitted wave is

bt = t1a
+
1 exp (iβ1h) (170)

Since t1 6= 0, no BIC can appear under the single mode approximation, since the first mode is even.
Consider two modes. At Γ point (kx0 = 0) the two modes are not coupled due to the symmetry

(the mode is even, and the second is odd, see Fig. 12): r12 = r21 = 0. Also for the odd mode we have
r22 = 1, t2 = 0, and attain the symmetry-protected BIC metioned above. When kx0 6= 0

a+
1 = r11a

−
1 exp (iβ1h) + r12a

−
2 exp (iβ2h)

a+
2 = r21a

−
1 exp (iβ1h) + r22a

−
2 exp (iβ2h)

a−1 = r11a
+
1 exp (iβ1h) + r12a

+
2 exp (iβ2h)

a−2 = r21a
+
1 exp (iβ1h) + r22a

+
2 exp (iβ2h)

⇒ 1−
(
r

(12)
eff

)2

exp (2iβ2h) = 0 (171)

with the effective reflection coefficient

r
(12)
eff =

r22 + αr11r21r12 exp (2iβ1h)

1− αr21r12 exp [i (β1 + β2)h]
, α =

1

1− r2
11 exp (2iβ1h)

(172)

So the behaviour of two coupled modes can be described as in the case of the Fabry-Perot resonator.
The radiated plane wave amplitude can be also described via an effective transmission coefficient

bt = t1a
+
1 exp (iβ1h) + t2a

+
2 exp (iβ2h) = t

(12)
eff a

+
2 exp (iβ2h) (173)

t
(12)
eff = t2 + αt1r21 exp (iβ1h)

[
r

(12)
eff exp (iβ2h) + r11 exp (iβ1h)

]
(174)

The dependence of t(12)
eff from the Bloch wavenumber shown in Fig. 13 reveals that for certain values of

kx0 where the effective transmission goes to zeros. This also corresponds to states with infinite quality
factor, and these states are called accidental BIC. Therefore we can conclude that the nature of these
accidental BIC-s is the destructive interference of leaky states.

Figure 10: Several leaky modes of 1D PhC slab and their quality factors (from arXiv:1907.09330v1).

6 2D and 2D Photonic crystals
Similarly to the 1D case of photonic crystals the reciprocal space splits into equivalen Brillouin zones,
so the physical properties of a crystal are defined by modal behavior in the first Brillouin zone. Three
non-complanar Bravais lattice vectors of elementary cell p1,2,3 and the condition (see Eq. (49))

exp (iGnRm) = 1, Gn = n1b1 + n2b2 + n3b3 (175)
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Figure 11: Dependence of the power reflection coefficient from the inverse wavelength and angle of
incidence for a photonic crystal slab in the air with period Λ = 1µm, thickness 0.7Λ, pitch width 0.6Λ,
and permittivity 3.52. One can distinguish poits at which some resonance lines become infinitely thin.

Figure 12: First, second and third propagating modes in 1D PhC and their reflection at the slab
interfaces (from arXiv:1907.09330v1).

where Rm = m1p1 +m2p2 +m3p3, , yield the basis reciprocal lattice vectors

b1 = 2π
p2 × p3

p1 · (p2 × p3)

b2 = 2π
p3 × p1

p1 · (p2 × p3)

b3 = 2π
p1 × p2

p1 · (p2 × p3)

(176)

In 2D and 3D the Brilloin zone can have different shapes. Its characteristic points are denoted with
capital Greek characters, e.g. see Fig. ...

The Floquet-Bloch theorem reads in vector form:

Φ (r) = ϕ (r) exp (ikr) , ϕ (r +Rm) = ϕ (r) , mα ∈ Z (177)

6.1 Plane wave expansion method in 2D
Analogously to the previous consideration of 1D PhC eigen solutions of the Maxwell’s equations can
be searched for by means of the Fourier method. Being written for the time-harmonic fields with time
dependence factor exp (−iωt) the vector Helmholtz equation for the magnetic field reads

∇× 1

ε (r)
∇×H (r) = ω2µ0H (r) (178)
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Figure 13: Effective transmission coefficient for the two-mode approximation

Figure 14: Example of the Brillouin zone for FCC lattice (wikipedia)

In case of 2D crystals the function ε (r) is periodic in the XY plane and independent of the third
coordinate z:

ε (r) = ε (ρ, z) = ε (ρ+Rm, z) , ρ = (x, y)
T (179)

with the Bravais lattice vectors Rm = m1p1 +m2p2, m1,2 are integers and p1,2 are lattice constants.
Eq. (178) is an eigenvalue problem which will be solved for unknown eigen frequencies ω providing
that the dielectric permittivity is real and dispersionless in a frequency range under consideration (the
case of dispersive materials will be discussed below). The Bloch theorem states

H (r) = exp (ikr)Hk (r) (180)

so that the function Hk (r) = Hk (r +Rm) is purely periodic with lattice periodicity. The Bloch
vector k = (kx, ky, 0)

T This periodic vector function can be decomposed into two polarization states,
TE, and TM (see Eq. (8)),

Hk (r) = êekH
e
κ (r) + êhkH

h
κ (r) (181)

where êe,hk are unit plane wave polarization vectors. Explicitly for the 2D problem under investigation
êTMk = êz, ê

TE
k = 1

k (k × êz).
Periodic functions in Eqs. (178) and (181) can be decomposed into their Fourier series

1/ε (r) =
∑
m fm exp (iGmr)

He,h
k (r) =

∑
mH

e,h
km exp (iGmr)

(182)

with Gm = m1b1 + m2b2 being the reciprocal lattice vectors, b1 = 2π
Λ (p2 × êz) / (êz · [p1 × p2]),

b2 = 2π
Λ (êz × p1) / (êz · [p1 × p2]), which lie in the plane XY . Substitution of (180)-(182) into (178)
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gives
∇×

∑
n fn exp (iGnr)∇×

∑
p

(
êepH

e
kp + êhpH

h
kp

)
exp (ikpr)

= ω2µ0

∑
m

(
êepH

e
km + êhpH

h
km

)
exp (ikmr)

(183)

where km = k +Gm, and the unit vectors êe,hm correspond to the wavevector km. Index m here is a
two-dimensional index. Curl operators transform to vector products∑

n

∑
p fn

[
(kp +Gn)× kp ×

(
êepH

e
kp + êhpH

h
kp

)]
exp [i (kp +Gn) r]

= −ω2µ0

∑
m

(
êemH

e
km + êhmH

h
km

)
exp (ikmr)

(184)

To simplify the equation the orthogonality of exponential functions can be used. Multiplication of the
both parts by exp (−ikmr) and integration over the period yields∑

n

fn
[
km × (km −Gn)×

(
êem−nH

e
k,m−n + êhm−nH

h
k,m−n

)]
= −ω2µ0

(
êemH

e
km + êhmH

h
km

)
(185)

Note that Gm−Gn = (m1 − n1) b1 + (m1 − n1) b2. Then, substitution Gp = Gm−Gn and a change
of the summation index yield∑

n

fm−n
[
km × kn ×

(
êenH

e
k,n + êhnH

h
k,n

)]
= −ω2µ0

(
êemH

e
km + êhmH

h
km

)
(186)

Since k · êz = 0, the latter equation splits into two independent equations for the TM and the TE
polarizations. By multiplying both parts by either êem or êhm one attains∑

n

fm−n |km| |kn|He
kn = ω2µ0H

e
km (187)

for the TE polarization, and ∑
n

fm−n (km · kn)Hh
kn = ω2µ0H

h
km (188)

for the TM polarization.
Eigen solutions of Eqs. (187) and (188) yield frequencies of waves, which can propagate in the

photonic crystal for a given direction and modulo of the Bloch wavevector k.

6.2 Plane wave expansion method in 3D
In order to generalize the results of the previous section here we consider a 3D infinitely periodic
structure – 3D photonic crystal:

∇× 1

ε (r)
∇×H (r) = ω2µ0H (r) (189)

H (r) = exp (ikr)Hk (r) (190)

so that the function Hk (r) = Hk (r +Rm) is purely periodic with lattice periodicity, Rm = m1p1 +

m2p2 +m2p3, and the Bloch vector k = (kx, ky, kz)
T . Fourier decomposition:

1/ε (r) =
∑
m fm exp (iGmr)

Hk (r) =
∑
m hkm exp (iGmr)

(191)

where m = (m1,m2,m3)
T ∈ Z3.∑

p

∑
n

fp [(kn +Gp)× kn × hkn] exp [i (kn +Gp) r] = −ω2µ0

∑
m

hkm exp (ikmr) (192)
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with km = k +Gm. Orthogonality gives∑
n

fm−n (km × kn × hkn) = −ω2µ0hkm (193)

The eigenvalue problem of Eq. (193) can be solved directly by the QR algorithm. Ones sorted, the
solutions ωn will correspond to the energy bands in the ascending order. However, when the geometrical
shape of a photonic crystal unit cell is complex, one should take a sufficiently large number of Fourier
components of the function 1/ε in each dimension, so the size of the linear system (193) would be
too large to apply the QR algorithm (as its numerical complexity grows cubically O

(
N3
)
relative

to the matrix size). From the other hand, one usually needs to calculate only several lowest bands
where the largest gaps may appear, therefore, only several smallest eigen solutions are of interest.
To conform these restrictions in practice one usually applies iterative methods, like the method of
inverse iteration or Krylov subspace methods. Iterative procedures used within these approaches
require performing a matrix-vector multiplication at each iteration, thus, the computational complexity
reduces approximately to O

(
N2
)
.

Further reduction of the computational complexity can be done by exploiting the special structure
of the left-hand part matrix in (193). Multiplications by wavevector projections kmx,y,z are diagonal,
and can be done with O (N) operations. Multiplication by the three-dimensional block-Toeplitz matrix
can be done via the Fast Fourier Transform. In order to explain the algorithm let us start with one-
dimensional multiplication of a Toeplitz matrix T of size N ×N by a vector x of size N :

ym = (Tx)m =
∑
n

tm−nxn ⇔


y1

y2

y3

. . .

 =


t0 t−1 t−2 . . .
t1 t0 t−1 . . .
t2 t1 t0 . . .
. . . . . . . . . . . .




x1

x2

x3

. . .

 (194)

The size of the matrix can be increased up to 2N − 1 so as to make the product to have a form of a
convolution:

T̃ =


t0 t−1 t−2 . . . t−N+1 tN−1 . . . t2 t1
t1 t0 t−1 . . . t−N+2 t−N+1 . . . t3 t2
t2 t1 t0 . . . t−N+3 t−N+2 . . . t4 t3
. . . . . . . . . . . . . . . . . . . . . . . . . . .
tN−1 tN−2 tN−3 . . . t0 t−1 . . . t−N+1 tN−1

⇒ (195)

⇒ ỹm =
(
T̃ x̃
)
m

=
∑
n

t(m−n) mod N x̃n (196)

where x̃ =
(
xT , 0, . . . , 0

)T . Matrix T̃ is called the circulant matrix as its multiplication by a vector is
a convolution product. From the latter equation it can be seen that the first N elements of ỹ equal to
y. The advantage of such transformation is that the discrete Fourier image F of a convolution product
is an element-by-element multiplication:

(F ỹ)m =
(
F
(
T̃ x̃
))

m
= F

(
t̃
)
m
F (x̃)m (197)

with vector t̃ = (t0, t1, t2, . . . , t−N+1, tN−1, . . . , t2, t1)
T . Since the Fourier transform of a vector, which

size is power of 2 or factorizes into a product of powers of small prime numbers, can be calculated
by the Fast Fourier Transform algorithm, the product y = Tx can be evaluated with O (N logN)
operations.

A generalization of the fast multiplication approach to three dimensions is straightforward, so the
net cost of calculating several small eigenvalues of Eq. (193) can be as small as O (N logN) with N
being the total number of Fourier harmonics in all three dimensions.
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7 Coupled dipole lattices
For some physical problems it is also meaningful to consider periodic lattices of small scattering par-
ticles, so that each particle can be modeled by its dipole response. In this section we consider the
coupled dipole problem and a related Discrete Dipole Approximation (DDA) used for large scattering
particle simulations.

7.1 Coupled Dipole Method
Consider Nd dipoles with moments pm located at points rm, m = 1, . . . , Nd and surrounded by a
homogeneous isotropic medium of permittivity ε. Electric field of each dipole at point r is

Em (r,pm) =
exp (ik0 |r − rm|)

4πε

[
r̂m (r̂mpm)

(
3

|r − rm|3
− 3ik0

|r − rm|2
− k2

0

|r − rm|

)
+

+pm

(
− 1

|r − rm|3
+

ik0

|r − rm|2
+

k2
0

|r − rm|

)] (198)

where k0 = ω
√
εµ0, and r̂m = (r − rm) / |r − rm|. Each dipole moment depends from the self-

consistent field at its location:
pm = χmE (rm) (199)

This field is a sum of fields of the rest of dipoles and, possibly, some external field Einc (vector
Foldy-Lax equations):

E (rm) = Einc (rm) +
∑
n 6=m

En (rm,pn) (200)

For the m-th dipole multiplication by the polarizability χm yields the system of linear equations on
unknown self-consistent dipole moments:

pm = χmE
inc +

∑
n 6=m

χmEn (rm,pn)⇒ (I− ΓA)P = ΓE inc (201)

where I is the identity matrix, Γ = diag {χ1, χ2, . . . , χNd
}, vector P =

(
pT1 ,p

T
2 , . . . ,p

T
Nd

)T , and E inc =([
Einc (r1)

]T
,
[
Einc (r2)

]T
, . . . ,

[
Einc (rNd

)
]T)T . The overall size of the linear system is 3Nd× 3Nd.

The elements of matrix can be enumerated with two types of indices – dipole number m, and Cartesian
coordinate index α = x, y, z:

Anm,αβ =
exp (ik0 |rn − rm|)

4πε

[
r̂mn,αr̂mn,β

(
3

|∆rmn|3
− 3ik0

|∆rmn|2
− k2

0

|∆rmn|

)
+

+δαβ

(
− 1

|∆rmn|3
+

ik0

|∆rmn|2
+

k2
0

|∆rmn|

)] (202)

where ∆rmn = rm − rn.
If the number of dipoles Nd is small, than the system (201) can be solved directly by matrix

inversion, which has the asymptotic complexity O
(
N3
)
. For large coupled dipole ensembles one has

to apply an iterative procedure, which requires only matrix-vector multiplications with complexity
O
(
N2
)
. This complexity can be further reduced if all dipoles are arranged in a regular 3D lattice.

Denote the lattice constants dα, and let the dipole indices be triples corresponding to indices for each

Cartesian coordinate: m = (mx,my,mz). Then, |rm − rn| =
√∑

α d
2
α (mα − nα)

2, and one can see,
that matrix A is a 3D block-Toeplitz matrix. The technique for fast multiplications of matrices of this
kind by vectors was explained above.

Once the polarizabilities are found, one can calculate the far field amplitude in any direction by
a direct summation of fields from each dipole, Eq. (198). In the limit r → ∞ only the terms ∼ 1/r
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remain, so

Efar (r) = Einc (r) + k2
0

exp (ik0r)

4πεr

∑
m

[pm − r̂m (r̂mpm)] exp [ik0 (r̂ · rm)] (203)

For the plane wave incidence the extinction cross-section is given by the optical theorem

Cext =
4π

k0 |Einc|2
=
[
Esca

(
r̂inc

)
·Einc

]
(204)

7.2 Discrete Dipole Approximation
A related approach, which is often used for calculation of the light scattering by non-spherical particles
of various scales is the Discrete Dipole Approximation (DDA). The derivation starts from the volume
integral solution of the Helmholtz equation (3):

E (r) = Einc (r) + iωµ0

ˆ

V

G0 (r − r′)J (r′) d3r′ (205)

where the free-space dyadic Green’s function satisfies equation

∇×∇×G0 (r − r′)− k2
0G0 (r − r′) = Iδ (r − r′) (206)

Explicitly in the Cartesian coordinates

G0 (r − r′) =

(
I +

1

k2
0

∇∇
)
g0 (r − r′) =

(
I +

1

k2
0

∇∇
)

exp (ik0 |r − r′|)
4π |r − r′|

(207)

The operator behind the scalar Green’s function g0 yields the dipole response of the form of Eq. (198).
Taking the source to be polarization currents due to inhomogeneous permittivity J = −iω (ε (r)− ε0)E
results in the Lippmann-Schwinger equation

E (r) = Einc (r) + ω2µ0

ˆ

V

G0 (r − r′) [ε (r′)− ε0]E (r′) d3r′ (208)

The dyadic G0 (r − r′) becomes singular at r = r′, and G0 (r − r′) ∼ 1/ |r − r′|3 around this point.
In order to treat the singularity consider a small volume V0 bounded by the surface S0 containing the
point r = r′ so that

´
V
G0 (r − r′)J (r′) d3r′ =

´
V \V0

G0 (r − r′)J (r′) d3r′

+
´
V0

[G0 (r − r′)−Gs (r − r′)]J (r′) d3r′ − 1

k2
0

¸
S0
ns

(r − r′) · J (r′)

4π |r − r′|3
d2r′

(209)

where ns is the external unit normal to S0, and

Gs (r − r′) =
1

k2
0

∇∇ 1

4π |r − r′|
(210)

The equation was also transformed in accordance with the Gauss-Ostrogradsky theorem

´
V0
Gs,αβ (r − r′) Jβ (r′) d3r′ =

1

k2
0

´
V0

d

dxα

d

dxβ

Jβ (r′)

4π |r − r′|
=

1

k2
0

¸
S0
ns,α

d

dxβ

Jβ (r′)

4π |r − r′|

= − 1

k2
0

¸
S0
ns,α

(
xβ − x′β

)
Jβ (r′)

4π |r − r′|3

(211)
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In the following we will use the long wavelength approximation J (r′) ≈ J (r) for any r ∈ V . Then,
the integral becomes

´
V
G0 (r − r′)J (r′) d3r′ ≈

´
V \V0

G0 (r − r′)J (r) d3r′

+
´
V0

[G0 (r − r′)−Gs (r − r′)]J (r) d3r′ − 1

k2
0

¸
S0
ns

(r − r′) · J (r)

4π |r − r′|3
d2r′

(212)

Since V is electrically small we can further associate V with V0 to get
ˆ

V

G0 (r − r′)J (r′) d3r′ ≈
[
M − 1

k2
0

L

]
· J (r) (213)

with
M =

´
V0

[G0 (r − r′)−Gs (r − r′)] d3r′

L =
¸
S0
ns

(r − r′)
4π |r − r′|3

d2r′
(214)

Evaluation of these terms can be done analytically or numerically for volumes of different shapes.
Going back to the Lippmann-Schwinger equation (208) written for a large scattering particle, one

can divide the scattering volume into a set of electrically small volumes V =
⋃
Vm:

E (r) = Einc (r) + ω2µ0

∑
n

´
Vn
G0 (r − r′) [ε (r′)− ε0]E (r′) d3r′ ⇒

⇒ E (rm) = Einc (rm) + ω2µ0

∑
n 6=mG0 (rm − rn) ∆εnE (rn) ∆Vn − iω∆εm

[
Mm −

1

k2
0

Lm

]
·E (rm)

(215)
where rm ∈ Vm. This is the linear equation system for unknown fields E (rm), which has the form
similar to the case of CDA, Eq. (201), but with a different block diagonal terms defined in Eq. (214).
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