Уравнения математической физики

Лекторы:

Язык:

Русский

Трудоемкость:

Форма контроля:

Экзамен

Образовательная программа:

Теоретическая и экспериментальная

физика

4 семестр

Пререквизиты:

Дифференциальные уравнения

Линейная алгебра

Математический анализ

Лекции (ак.час)*	Практические занятия (ак.час)	Лабораторные занятия (ак.час)		
34	18			
*1 академический час = 45 минутам				

Дисциплина направлена на освоение студентами основных методов математической физики. Она предназначена для тех, кто намерен активно и осознанно использовать математический аппарат в физических исследованиях. Программа охватывает изучение основных методов теории уравнений в частных производных эллиптического, гиперболического и параболического типов (основного аппарата физики), теории интегральных уравнений, теории операторов, теории обобщенных функций, вариационного исчисления. Основная цель курса - сделать методы математической физики рабочим инструментом студентов, сориентированных на физические исследования, открыть для них общий математический взгляд на физические проблемы, который позволяет выявлять общие закономерности в разнородных физических явлениях.

Содержание курса

4 семестр

Уравнения математической физики

Структура курса

Разделы	Лекции (ак.ч.)	Практика (ак.ч.)
1. Одномерное волновое уравнение		
 1.1. Одномерное волновое уравнение. Метод Даламбера. 1.2. Метод продолжения. Метод продолжений для полуограниченной струны. Жесткое закрепление струны. Свободное закрепление струны. Конечная струна. 1.3. Метод Фурье для конечной струны. 1.4. Метод Фурье для свободного закрепления струны. Вынужденные колебания струны. 	6	2
2. Одномерное уравнение теплопроводности		
 2.1. Одномерное уравнение теплопроводности. Метод Фурье для конечного стержня. 2.2. Метод Фурье для конечного теплоизолированного стержня. Неоднородное уравнение теплопроводности. 2.3. Уравнение теплопроводности с неоднородными краевыми условиями. Уравнение теплопроводности для бесконечного стержня. 2.4. Задачи об установившихся процессах. Законы Фурье. 2.5. Метод подобия в теории теплопроводности. Задача о возрасте Земли. 	6	4
3. Уравнение Лапласа		
3.1. Уравнение Лапласа. Задача Дирихле для уравнения Лапласа в круге.3.2. Задача Дирихле для уравнения Лапласа в прямоугольнике.	2	2
4. Теоремы единственности		
4.1. Теорема единственности для уравнения струны. Теорема единственности для уравнения теплопроводности.4.2. Формулы Грина в трехмерном случае. Следствия из формул Грина.4.3. Теорема единственности для уравнения Лапласа. Вторая формула Грина в пространстве п	4	
5. Классификация линейных уравнений в частных производных		
5.1. Классификация линейных уравнений в частных производных в пространстве n 5.2. Классификация линейных уравнений в частных производных в пространстве	2	2
6. Функция Грина обыкновенного дифференциального оператора		
6.1. Функция Грина обыкновенного дифференциального оператора. Функция Грина задачи Штурма- Лиувилля	2	
7. Функция Грина задачи Дирихле для уравнения Лапласа		
 7.1. Функция Грина задачи Дирихле для уравнения Лапласа. Инвариантность функции Грина относительно перестановки аргументов. 7.2. Метод изображений. Функции Грина для различных двугранных углов. Функция для слоя между двумя параллельными плоскостями. 7.3. Функция Грина задачи Дирихле для уравнения Лапласа в круге. Функция Грина задачи Дирихле для уравнения Лапласа в шаре. 7.4. Метод инверсий. Функция Грина задачи Дирихле для двух касающихся шаров. 	4	4
8. Уравнение Гельмгольца		
8.1. Уравнение Гельмгольца. Задача Дирихле для уравнения Гельмгольца. 8.2. Формулы Грина для оператора Гельмгольца в пространстве. Функция Грина задачи Дирихле для уравнения Гельмгольца.	4	4
9. Специальные функции		

		П
9.1. Ортогональные полиномы.		l
9.2. Уравнение Бесселя и цилиндрические функции.		l
9.3 Уравнение Гельмгольца в цилиндрических и сферических областях.		

Рекомендуемые ресурсы

- 1. Лобанов И.С., Попов А.И., Попов И.Ю., Трифанов А.И. Типовой расчет по математической физике. Университет ИТМО, Санкт-Петербург, 2018 39 с.
 - https://books.ifmo.ru/book/2189/tipovoy_raschet_po_matematicheskoy_fizike:_uchebnometodicheskoe_posobie_/_recenzenty:_miroshn
- 2. Владимиров В.С., Жаринов В.В. Уравнения математической физики. Москва: Физматлит, 2004. 400 с.
- 3. Власова Е.А., Марчевский И.К. Элементы функционального анализа. СанктПетербург: Лань, 2015. 400 с.
- 4. Тихонов А.Н, Самарский А.А. Уравнения математической физики. Москва: Наука, 2004. 798 с.
- 5. Смирнов В.И. Курс высшей математики. Том II / Пред. Л. Д. Фаддеева, пред. и прим. Е. А. Грининой: 24-е изд. СПб.: БХВ-Петербург, 2008. 848 с.
- 6. Блинова И.В., Попов И.Ю., Трифанова Е.С. Типовые расчеты по фунциональному анализу. Университет ИТМО, Санкт-Петербург, 2011 – 24 с. https://books.ifmo.ru/book/647/tipovye_raschety_po_funkcionalnomu_analizu.htm
- 7. Попов И.Ю. Математическая физика. Университет ИТМО, Санкт-Петербург, 2005 -105 с.
- 8. Блинова И.В., Попов И.Ю. Простейшие уравнения математической физики. Университет ИТМО, Санкт-Петербург, 2009 59 с.
 - И.В., Кузнецов Е.А., Мильштейн А.И., Подивилов Е.В., Черных А.И., Шапиро Д.А., Шапиро Е.Г. Задачи по математическим методам физики. Изд. 4-е. Москва: Книжный дом «ЛИБРОКОМ», 2009 288 с.

Политика оценивания

Оценочные средства дисциплины: экзамен.

Знания, умения и навыки обучающихся при промежуточной аттестации в форме экзамена определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

«Отлично» - обучающийся глубоко и прочно усвоил весь программный материал, исчерпывающе, последовательно, грамотно и логически стройно его излагает, не затрудняется с ответом при видоизменении задания, свободно справляется с задачами и практическими заданиями, правильно обосновывает принятые решения, умеет самостоятельно обобщать и излагать материал, не допуская ошибок.

«Хорошо» - обучающийся твердо знает программный материал, грамотно и по существу излагает его, не допускает существенных неточностей в ответе на вопрос, может правильно применять теоретические положения и владеет необходимыми умениями и навыками при выполнении практических заданий.

«Удовлетворительно» - обучающийся усвоил только основной материал, но не знает отдельных деталей, допускает неточности, недостаточно правильные формулировки, нарушает последовательность в изложении программного материала и испытывает затруднения в выполнении практических заданий.

«Неудовлетворительно» - обучающийся не знает значительной части программного материала, допускает существенные ошибки, с большими затруднениями выполняет практические задания, задачи.