Физика: Механика

Раздел "Механика" является первым разделом пятисеместрового курса общей физики. Весь курс является базовым для студентов физико-технического факультета и лежит в основе всего дальнейшего обучения. В первом семестре изучается классическая механика, элементы специальной теории относительности, элементы теории колебаний, теории упругости и механики сплошных сред. Обсуждаются как классические результаты, так и достижения современной физики в призме изучаемого материала. В курсе делается акцент на изучение физических явлений и законов, и предполагается что вопросы, требующие специальной математической подготовки будут рассмотрены в последующих курсах по математической и теоретической физике. В результате обучения студенты должны знать основные законы механики и уметь их применять при решении задач.

Язык обучения
Русский
Общая физика
Содержание программы

Лекция 1    Введение
    "Современная картина мира. Микро- и макромир. Задачи современной физики.
Понятия пространства и времени. Классическое представление. Эталоны длины и времени. Способы измерения промежутков времени и длины. Границы применимости классической нерелятивистской механики. Система отсчета. Различные системы координат и связь между ними."
Лекция 2    Нерелятивистская кинематика материальной точки
    Основные понятия кинематики материальной точки: радиус-вектор, траектория, перемещение, путь, скорость, ускорение. Выражение скорости и ускорения в различных системах координат. Естественная параметризация движения. Ускорение материальной точки при криволинейном движении, его тангенциальная и нормальная составляющие. Вращательное движение. Циклоида, брахистрона и таутохрона. Баллистическое движение. Кривизная траектории.
Лекция 3    Нерелятивистская динамика материальной точки
    Основные понятия динамики материальной точки. Понятие инерции. Первый закон Ньютона. Инерциальные системы отсчета. Импульс. Масса как мера инертности. Сила. Импульс. Второй закон Ньютона. Закон сохранения импульса материальной точки. Третий закон Ньютона. Импульс системы материальных точек. Сохранение импульса замкнутой системы. Центр масс системы материальных точек. Система центра масс. Закон движения центра масс. Приведенная масса. Аддитивность и сохранение массы. Уравнение движения. Закон движения. Начальные условия. Прямая и обратная задача динамики.
Лекция 4    Нерелятивистская динамика материальной точки
    Интегрирование уравнений движения. Трение. Пример задачи: баллистическое движение с учетом сопротивления воздуха. Движение тел переменной массы. Реактивное движение. Уравнение Мещерского, формула Циолковского. Поворот ракеты.
Лекция 5    Нерелятивистская динамика системы материальных точек
    Работа силы. Мощность. Понятие кинетической энергии. Кинетическая энергия системы материальных точек. Преобразование энергии при переходе от одной ИСО к другой и теорема Кенига. Консервативные силы. Потенциальная энергия. Связь потенциальной энергии и силы. Градиент. Закон сохранения полной механической энергии.
Лекция 6    Нерелятивистская динамика
    "Эквипотенциальные поверхности и смысл градиента. Примеры потенциалов, встречающихся в физике. Финитное и инфинитное движение.
Столкновения частиц. Упругие столкновения. Векторные диаграммы. Неупругие столкновения. Каналы реакции. Порог реакции."
Лекция 7    Нерелятивистская динамика
    Момент силы и момент импульса материальной точки и системы материальных точек. Уравнение динамики вращательного движения для материальной точки и системы материальных точек. Закон сохранения момента импульса. Момент импульса относительно оси. Вращение относительно движущегося центра. Рассеяние частиц. Формула Резерфорда. Дифференциальное сечение рассеяния.
Лекция 8    Нерелятивистская динамика
    Секториальная скорость. Закон всемирного тяготения. Опыт Кавендиша. Потенциальная и полная энергия гравитационного взаимодействия. Вывод законов Кеплера.
Лекция 9    Гравитационное взаимодействие
    "Типы орбит и их связь с полной энергией. Космические скорости. Межпланетные полеты. Приливные силы.
Теорема Гаусса для гравитационного поля, примеры ее применения."
Лекция 10    Элементы космологии
    Элементы космологии. Космологический постулат. Закон Хаббла. Критическая плотность.
Лекция 11    Нерелятивистская динамика в неинерциальных системах отсчета
    Неинерциальные системы отсчета. Принцип относительности для НИСО. Силы инерции. Закон движения в НИСО. Частные случаи: поступательное движение НИСО и движение с вращением. Ускорение д’Аламбера, Кориолиса, центробежное. Маятник Фуко.
Лекция 12    Нерелятивистская динамика в неинерциальных системах отсчета, введение в СТО
    "Динамика движения материальной точки в окрестности поверхности Земли. Отклонение отвеса от направления на центр Земли. Связь инертной и гравитационной масс.

Экспериментальные обоснования СТО"
Лекция 13    Релятивистская кинематика материальной точки
    Постулаты специальной теории относительности. Относительность одновременности событий. Способы синхронизации часов. Вывод преобразований Лоренца. Интервал. Причинность. Собственное время. Распад мю-мезонов. Лоренцево сокращение продольных размеров объекта и фотосъемка быстро движущихся объектов.
Лекция 14    Релятивистская кинематика материальной точки
    Диаграммы Минковского. Парадокс "пенала". Экспериментальная проверка замедления времени. Релятивистский закон преобразования скоростей. Аберрация света. Продольный и поперечный эффект Доплера для периодической последовательности сигналов. Парадокс близнецов, связь с эффектом Доплера.

Лекция 15    Релятивистская динамика
    Релятивистский импульс и релятивистская энергия. Четырехвектор энергии-импульса. Энергия покоя. Преобразование энергии и импульса при переходе между инерциальными системами отсчета. Релятивистский закон сохранения энергии. Связь энергии и массы.
Лекция 16    Релятивистская динамика
    Столкновения и распад релятивистских частиц. Порог реакции. Ускорители частиц.
Лекция 17    Кинематика АТТ
    "Понятие абсолютно твердого тела (АТТ). Элементы кинематики АТТ. Независимость угловой скорости от начала отчета в ТТ. Сложение вращений. Разложение плоского движения на поступательное и вращательное. Мгновенная ось вращения.
Момент импульса и момент инерции твердого тела. Теорема Гюйгенса-Штайнера. Вычисление моментов инерции. Понятие о тензоре инерции."
Лекция 18    Динамика АТТ
    Динамика вращательного движения АТТ вокруг фиксированной оси. Движение относительно центра масс. Маятник Максвелла. Скатывание тел с наклонной плоскости. Кинетическая энергия вращения. Аналогия между вращательным и поступательным движением.
Лекция 19    Нерелятивистсткая динамика абсолютно твердого тела
    Свободный гироскоп. Приближенная теория движения гироскопа под действием внешних сил. Симметричный волчок. Нутация. Тензор и эллипсоид инерции
Лекция 20    Основы теории колебаний
    Гармонические колебания материальной точки. Уравнение колебаний. Общее решение и начальные условия. Понятия фазы, частоты, амплитуды. Энергия коллебаний гармонического осциллятора. Метод комплексных амплитуд. Связь колебательного движения с движением по окружности. Сложение колебаний. Фигуры Лиссажу. Фазовое пространство.
Лекция 21    Основы теории колебаний
    Затухающие колебания материальной точки при вязком трении, понятие декремента затухания. Вынужденные колебания затухающего осциллятора: различные режимы. Добротность системы. Понятие резонанса. Лоренцева форма резонанса.
Лекция 22    Основы теории колебаний
    Установление колебаний. Биения. Связанные осцилляторы. Резонанс Фано. Колебания со многими степенями свободы. Нормальные колебания. Цепочка связанных осцилляторов. Оптические аналогии.
Лекция 23    Основы теории колебаний
    Физический маятник. Приведенная длина и центр качания. Адиабатические инварианты. Нелинейные колебания.
Лекция 24    Элементы теории упругости
    Деформация простого растяжения. Модуль Юнга. Коэффициент Пуассона. Плотность энергии упругой деформации. Всестороннее гидростатическое сжатие. Деформация сдвига. Модуль сдвига. Деформация кручения. Модуль кручения.
Лекция 25    Элементы механики сплошных сред
    Гидростатика несжимаемой жидкости. Закон Архимеда. Стационарное течение жидкости. Идеальная жидкость. Уравнение Бернулли, примеры. Кинематика вязкой жидкости. Вязкость. Внутреннее трение. Ламинарное течение вязкой жидкости по трубке. Формула Пуазейля.
Лекция 26    Элементы механики сплошных сред
    Обтекание тел жидкостью и газом. Лобовое сопротивление. Турбулентное движение. Число Рейнольдса. Подъемная сила. Эффект Магнуса. Элементы теории размерности.
Лекция 27    Элементы теории волн
    Кинематика волнового движения. Уравнение плоской и сферической волны. Поляризация механических волн. Волновое уравнение, скорость распространения волн. Волны в цепочках связанных осцилляторов.
Лекция 28    Элементы теории волн
    Энергия волн в упругой среде. Поток энергии, вектор Умова. Понятие волнового пакета. Групповая скорость, дисперсия. Упругие возмущения. Динамика струны. Звук.

Дополнительная информация

Требования для курса: знания физики и математики согласно программе среднего школьного образования, базовые знания понятий производной и интеграла и навыки работы с ними.

Политика оценивания: контрольные работы (2 шт по 15 баллов), лабораторные работы (15 баллов), проект (15 баллов), коллоквиум в середине семестра (20 баллов), экзамен в конце семестра (20 баллов).

Формат общения с преподавателем: вопросы на лекции, личные сообщения через ИСУ или на сайте курса. Актуальную информацию по курсу можно найти на сайте