Хранение и обработка данных

Lecturers:

Language:

Русский

Credit points:

3 з.е.

Monitoring type:

Зачет

Educational Program:

Теоретическая и экспериментальная

физика

4 семестр

Беспроводные технологии

4 семестр

Prerequisites:

Архитектура ЭВМ Операционные системы Анализ информации Обработка файлов

Законы логики

Lectures (a.h)*	Practice (a.h)	Labs (a.h)	
	16		
	*1 academic hour = 45	5 minutes	

Дисциплина состоит из трех разделов: «Введение в обработку и анализ данных», «Основы баз данных» и «Основы NoSQL систем». 1) Раздел «Введение в обработку и анализ данных» освещает вопросы, связанные с представлением данных, разведочным анализом, визуализацией. Особое внимание уделяется анализу временных рядов. 2) Раздел «Основы баз данных» освещает вопросы, связанные с организацией современных баз данных. Особое внимание уделяется проектированию и разработке баз данных, основанных на реляционной модели. 3) Раздел «NoSQL-системы» освещает вопросы, связанные с организацией слабоструктурированных и неструктурированных данных. Рассматриваются технологии, характерные для этих систем, классификация и приемы работы с наиболее популярными представителями хранилищ типа ключ-значение, документных хранилищ, колоночных и графовых.

4 семестр

Хранение и обработка данных

Структура курса

Разделы	Консультации (ак.ч.)	
1. Общие сведения о методологии анализа данных		
1.1. Первичная обработка данных		
1.2. Инструменты обработки данных		
1.3. Визуализация данных		
1.4. Анализ и преобразование данных		
1.5. Работа с временными рядами		
2. Реляционные базы данных		
2.1. Основы баз данных		
2.2. Проектирование структурированных данных	16	
2.3. Запросы на языке SQL		
2.4. Объекты баз данных		
3. NoSQL хранилища данных		
3.1. NoSQL хранилища данных		
3.2. Хранилища класса ключ-значение		
3.3. Документные хранилища данных		
3.4. Колоночные хранилища данных		
3.5. Графовые хранилища данных		

Recommended resources

- 1. Андрианова Е.Г., Головин С.А., Зыков С.В., Лесько С.А., Чукалина Е.Р. Обзор современных моделей и методов анализа временных рядов динамики процессов в социальных, экономических и социотехнических системах. Российский технологический журнал. 2020;8(4):7-45.
- 2. Базалева О. Мастерство визуализации данных. 2018. 192 с. ISBN: 978-5-6040723-7-0
- 3. Робинсон Я., Эифрем Э., Вебер Дж. Графовые базы данных. Новые возможности для работы. ДМК-Пресс. 2016. 256 с.
- 4. PostgreSQL Documentation [Электронныйресурс] // The PostgreSQL Global Development Group. URL: https://www.postgresql.org/docs/
- 5. Швецов, В.И. Базы данных [Электронный ресурс]: учебное пособие / В.И. Швецов. Электрон. дан. Москва: , 2016. 218 с. Режим доступа: https://e.lanbook.com/book/100576. Загл. с экрана.
- 6. Ревунков, Г.И. Проектирование баз данных [Электронный ресурс]: учебное пособие / Г.И. Ревунков, Н.А. Ковалева, Е.Ю. Силантьева. Электрон. дан. Москва: МГТУ им. Н.Э. Баумана, 2018. 48 с. Режим доступа: https://e.lanbook.com/book/103499. Загл. с экрана.
- 7. Сирант, О.В. Работа с базами данных [Электронный ресурс]: учебное пособие / О.В. Сирант, Т.А. Коваленко. Электрон. дан. Москва: , 2016. 149 с. Режим доступа: https://e.lanbook.com/book/100424. Загл. с экрана.
- 8. Хранение и обработка данных / Университет ИТМО, Открытое образование. Режим доступа: https://openedu.ru/
- 9. Эрик, Р. Семь баз данных за семь недель. Введение в современные базы данных и идеологию NoSQL [Электронный ресурс] / Р. Эрик, Р.У. Джим.; под ред. Ж. Картер; пер. с англ. Слинкин А.А.. Электрон. дан. Москва: ДМК Пресс, 2013. 384 с. Режим доступа: https://e.lanbook.com/book/58690.
- 10. Илюшечкин, В. М. Основы использования и проектирования баз данных : учебник для академического бакалавриата / В. М. Илюшечкин. Москва : Издательство Юрайт, 2019. 213 с. (Бакалавр. Академический курс). ISBN 978-5-534-03617-6. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/431131
- 11. Стружкин, Н. П. Базы данных: проектирование : учебник для академического бакалавриата / Н. П. Стружкин, В. В. Годин. Москва : Издательство Юрайт, 2019. 477 с. (Бакалавр. Академический курс). ISBN 978-5-534-00229-4. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/432177

Grading Policy

Оценочные средства дисциплины: итоговое упражнения, рубежный зачет, итоговый зачет.

1. Индивидуальные упражнения.

После каждой лекции студентам выдаются индивидуальные задачи. Задачи включают в себя некоторое количество (1-20) заданий. Задание выполняется студентом при помощи сети Интернет и инструментов, рассматриваемых в лекции. Срок выполнения - не позднее срока освоения дисциплины. Для ввода ответа на задания дается от двух до десяти попыток.

Подпункты задачи оцениваются равномерно. Если в задаче N полей ввода, то каждое оценивается согласно формуле 60/M/N, где M — количество задач в курсе (от 10 до 16). **Итого, максимально возможный балл за задачу равен 60/M.** Минимальный бал по задаче не предусмотрен (равен 0)

2. Рубежный зачет

На 8 неделе обучения сдается рубежный зачет. Студент получает индивидуальные задачи по лекциям первого раздела курса. Задачи включают в себя некоторое количество (1-20) заданий. Тестовое задание выполняется студентом при помощи сети Интернет и инструментов, рассматриваемых в лекции за ограниченное время (60-90 минут). Для проверки ответа на задания дается от двух до пяти попыток. Варианты задач генерируются автоматически и представляют собой задачи как с закрытым, так и открытым типом вопросов. Каждое задание оценивается в 20/N баллов, где N — количество заданий, 20 — максимальное количество баллов за контрольную работу, минимальное количество баллов для получения зачета по контрольной работе равно 10. Тестирование считается выполненным, если студент ответил верно на N/2 задний (т.е. набрал 50% или более). Попытка сдачи рубежного зачета одна.

3. В конце семестра сдается итоговый зачет:

Студент получает индивидуальные задачи по лекциям второго и третьего разделов курса. Задачи включают в себя некоторое количество (1-20) заданий. Тестовое задание выполняется студентом при помощи сети Интернет и инструментов, рассматриваемых в лекции за ограниченное время (60-90 минут). Для проверки ответа на задания дается от двух до пяти попыток.

Варианты задач генерируются автоматически и представляют собой задачи как с закрытым, так и открытым типом вопросов. Каждое задание оценивается в 20/N баллов, где N — количество заданий, **20 — максимальное количество баллов за контрольную работу, минимальное количество баллов для получения зачета по контрольной работе равно 10.** Тестирование считается выполненным, если студент ответил верно на N/2 задний (т.е. набрал 50% или более). Попытка сдачи итогового контроля одна.

Для зачета по дисциплине необходимо выполнить индивидуальные задачи курса, рубежный зачет (порог 50%), итоговый зачет (порог 50%) и набрать в сумме не менее 60 баллов, максимальное количество баллов - 100.

Знания, умения и навыки обучающихся при промежуточной аттестации в форме зачета определяются оценками «зачтено», «не зачтено».

«Зачтено» - обучающийся знает курс на уровне материала онлайн-курса, умеет привести разные точки зрения по излагаемому вопросу.

«Не зачтено» - обучающийся имеет пробелы в знаниях основного учебного материала, допускает принципиальные ошибки в выполнении предусмотренных программой заданий.